Humic Substances as Complexing Agents for Metals (section 13.2.3; textbook) Many possible complexation sites on humic substances: In natural systems, the extent of complexation depends on a number of factors; - 1. the nature of the metal ion* - 2. nature of humic material - 3. pH of the solution - 4. ionic strength of the solution ## Conditional Formation Constants (K_f') at pH 5 for standardized fulvic acid. | Metal ion | $\mathbf{K_f}$ | |---------------------|-------------------| | Mg^{2+} Ca^{2+} | 1.4×10^2 | | | 1.2×10^3 | | Mn^{2+} | 5.0×10^3 | | Co^{2+} | 1.4×10^4 | | Ni ²⁺ | 1.6×10^4 | | Cu ²⁺ | 1.0×10^4 | | Zn^{2+} | 4.0×10^3 | | Pb^{2+} | 1.1×10^4 | Consider a water sample containing 85 μ g/L of Ni and 8 mg/L DOM in the form of fulvic acid. Calculate the concentration of complexed ([Ni-FA]) and uncomplexed ([Ni]_{free})nickel ion. Use a typical concentration of carboxylates for fulvic acids of C_{CO2} - = 5 mmol/g.