CHEMISTRY 301 ~ Fall 2016 Aqueous Environmental Chemistry

Introduction to the properties and chemical composition of natural waters with an emphasis on chemical equilibria in controlling solubility and gas exchange. The role of pH, redox, complexation and ion-exchange on chemical speciation, distribution and remediation will be examined. Topics include nutrient ions, heavy metals and organic molecules, acid mine drainage, wastewater treatment and water purification technologies.

Instructor:Dr. Erik KroghOffice: B360-Rm328Phone:250.753.3245, local 2307Web: web.viu.ca/krogh

Email: erik.krogh@viu.ca

Textbook:

Environmental Chemistry: Glob. Perspec. (3nd Ed), G.W. van Loon; S.J. Duffy, 2011 (Required) Aquatic Environmental Chemistry, A.G. Howard, Oxford Press, 1998 (Optional-Recommended)

Prerequisites: CHEM 140 & 141/142 **Recommended:** CHEM 221

Time and Location: 1:00-2:20 **T Th** B360-323

1:30-2:20 **F** B355-103

Office Hours: 11:00 – 12:00 T Th & F

Course Evaluation:

Seminar Participation	5%
Problem Set Assignments (4)	10%
Research Paper Assignment	10%
Case Study	10%
Mid-Terms (2)	25%
Final Exam	40%

Additional Texts:

Environmental Chemistry, 2nd ed., N. Bunce, Wuerz Publishing, 1994
Elements of Environmental Chemistry, R.A. Hites, Wiley, 2007
Water Chemistry, M.M. Benjamin, McGraw-Hill Publishers, 2002
Consider a Spherical Cow: A course in environ problem solving, J. Harte, Univ Sci Books, 1988
Water Chemistry: Green Science and Technology of Nature's Most Renewable Resource, S.

Manahan, CRC Press, 2010

Key Periodicals:

Environmental Science and Technology Water Research

CHEM 301 ~ COURSE OUTLINE AQUEOUS ENVIRONMENTAL CHEMISTRY

Introduction:

Environmental Chemistry, Properties of Water, Water Quality and Natural Water Bodies

lecture notes Chapter 1

Review of Important Chemical Principles and Units of Measure

lecture notes review handout

Equibrium constants: K_w, K_a, K_{sp} Acids/bases: pH, pK_a Redox: oxidation states. E^o Thermodynamics: ΔG°

Chemical Composition of Natural Water

Readings: Chapter 9, 15.2 -15.4

Hydrologic and biogeochemical cycles, role of dissolved gases and solids Introduction to alkalinity, hardness, dissolved organic matter

Distribution of Chemical Species in Aquatic Systems Readings: Chapter 10

Acid - Base Equilibria: carbonates, phoshates and ammonia equilbria Redox Equilibria: electrode potentials, Nernst equation and pE pE and pH relationships

Gases in Water Readings: Chapter 11

Solubility of inert and reactive gases: Henry's law, temperature effects

Organic Matter in Water Readings: Chapter 12

Origins, fate and chemical interactions involving humic material: DOM, POM Anthropogenic molecules: surfactants, complexing agents, biocides

Metals in the Hydrosphere Readings: Chapter 13

Classifications, complexes, phase interactions pE-pH diagrams

Colloids and Surface Interactions Readings: Chapter 14

Surface properties, adsorption phenomena, partitioning Clay minerals and cation exchange capacity

Microbial Catalysis (brief) Readings: Chapter 15

Oxidation: BOD, COD and TOC

Nitrification and Denitrification reactions: pE^o(w)

Water Pollution and Waste Water Treatment Chemistry Readings: Chapter 16, 19

Types of water pollution

Treatment and disinfection chemistry: chlorination, ozonation and advanced oxidation

Remediation and waste disposal technologies

Case Studies: Various Topics

Fridays, 1:30 - 2:20, B355-108

Handouts will be distributed throughout the course to supplement the course material.

Additional Resources for CHEM 301

Library Holdings

Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, W Strumm and JJ Morgan GB 855 S78 1996				
Aquatic Chemistry Concepts, JF Pankow	GB 855	P36 1991		
Aquatic Environmental Chemistry, A Howard	GB 855	H68 1998		
Basic Concepts of Environmental Chemistry, DW Connell	TD 193	B37 1997		
Canadian Water Quality Guidelines	TD 226	C42		
Chemistry of the Environment, TG Spiro and WM Stigliani	TD 193 S7 2003			
Clean Water: Water Quality and Water Pollution Control, KM Vigil [electronic resource]				
Environmental Chemistry, C Baird	TD 192	B35 1995		
Environmental Chemistry, SE Manahan	QD 31	2 M35 1994		
Environmental Chemistry, N Bunce	TD 193	B85 1994		
Environmental Soil and Water Chemistry, VP Evangelou	TD 878 E93 1998			
Freshwater, EC Peilou	GB661.2 P54 1998			
Handbook of Chemical Technology and Pollution Control, MB Hock	ing	TP 155 1998		
Introduction to Natural Water Chemistry, GK Pagenkopf	GB 855	P33 2000		
The Physical Chemistry of Natural Waters, FJ Millero	GB 855 M53 2001			
Water Quality Data: Analysis and Interpretation, AW Hounslow	TD 370	H68 1995		
Water Chemistry, M.M. Benjamin	GB 855 B46 2002			

Personal Holdings

The above titles are also available in my office along with the following:

Elements of Environmental Chemistry, R.A. Hites, Wiley, 2007 **Introductory Chemistry for the Environmental Sciences**, RM Harrison and SJ de Mora,

Environmental Science and Technology, ACS Periodical 1994 - to date

Policy on Cheating and Plagiarism¹

Cheating and plagiarism are serious offences. There are many forms of beating the system that are considered unacceptable methods of gaining credit. Experience has shown that it is impossible to define every version, and therefore each case tends to be judged separately. The overall aim is to prevent unjustified credit being obtained for work that is not one's own. The penalties for *attempting* to gain unjustified credit must necessarily appear harsh. It is just as serious for a lab report as for an exam. All lab instructors must refer suspicious situations to the course instructor. The penalties that will be applied include:

- A mark of zero for the work in question
- Referral to the Vancouver Island University Administration, which may include penalties such academic probation or suspension

For disciplinary actions taken by the administration refer to the General Information section of the Vancouver Island University Calendar and visit the website at www.mala.ca/policies.

The notes below give typical chemistry lab examples of situations that may help to clarify the broader definitions given in the Calendar.

- It is unacceptable to
 - record data from samples not prepared by the author without giving due credit to the donor
 - o present someone else's data without acknowledging credit (with or without their knowledge)
 - falsify data
 - o submit samples not prepared by the author.
- It is unacceptable to
 - o use ideas or facts from any source without proper reference citation
 - o copy another report or portions of a report, be it marked or not
 - o copy written material (whether from books, journals, or a website) without using quotation marks. However, keep in mind that direct quotation is not a common practice in scientific writing.
- There is a fine distinction between discussing a lab before work is submitted and producing a collaborative effort. Even if collaborative discussion has taken place, the material submitted for assessment must be the result of the author's individual effort.
- A person *supplying* material for the purpose of someone else copying or cheating is considered to be equally accountable, and will be subjected to similar penalties.

VIU Grade Scale

,				
A+	90-100	B-	68-71	
A	85-89	C+	64-67	
A-	80-84	C	60-63	
B+	76-79	C-	55-59	
В	72-75	D	50-54	

¹ Adapted from *University of Victoria, Chemistry 235 Laboratory Manual, 2003* with the author's permission.