Activity and Activity Co-efficients

Chemical reactivity refers to the overall tendency of a species to react. It depends on a number of familiar factors such as concentration, temperature, pressure <u>and</u> a factor that is often omitted in introductory treatments, the concentration of other *non-reacting* species in the system. We will define the chemical reactivity as the *Activity* of a species,

 $\{A\}$ or a. Any description of chemical reactivity must be based on a comparison to a species activity in some standard state, which can be arbitrarily assigned a value of unity (1.00...). If a species in a given system is less reactive than it is in this arbitrary system (set of conditions), then its Activity < 1.

The complete set of conditions describing the standard comparison system is called the standard state.

```
{std state} = {std conc} + {reference conditions}

for solutes, {std conc} = 1.0 mol/L

reference conditions include; std pressure of 1 atm

std temperature of 25°C

std composition of 'infinite dilution'
```

Activities are dimensionless because they are defined as ratios of actual reactivity to reactivity in a std state. Environmental conditions will always differ from reference conditions (i.e., 'infinite dilution').

The activity co-efficient (γ) can be defined as the ratio

$$\gamma = \frac{\text{reactivity per mole in a real system}}{\text{reactivity per mole in reference system}} = \frac{\frac{\{A\}_{\text{real}}}{[C]_{\text{real}}}}{\frac{\{A\}_{\text{reference}}}{[C]_{\text{reference}}}}$$

Since the *Activity* in the reference system is 1 and the concentration in the reference system is 1 M, we can see that the activity co-efficient is a unitless quantity that is numerically equal to $\{A\}_{real}/[C]_{real}$

In other words,
$$\{A\}_{real} = \gamma \times [C]_{real}$$

Thus, activity co-efficients are a proportionality constant that convert molar concentrations (an analytical determined quantity) to chemical *Activity* (a thermodynamic quantity). The activity co-efficient for a given species may vary widely over a range of solution compositions. When the actual and the reference states (infinite dilution) are very close, then $\gamma \rightarrow 1$ (i.e., $\{A\} \sim [C]$). This is generally true for most species in freshwater. To the extent that the actual conditions differ from the reference state, $\{A\} \neq [C]$. This is generally the case for species in brines, seawater and many wastewaters.

To summarize, the chemical *Activity* of a substance incorporates factors related to the substances molar concentration, its' physical environment <u>and</u> the chemical composition of its surroundings into a single variable. It is a measure of the tendency of a species to participate in a reaction under a particular set of conditions. Clearly, there is more to the reactivity of a species than its molar concentration alone predicts.

Predicting activity co-efficients from solution composition

The activity co-efficient varies with:

- ionic strength of the solution (I)
- charge of the ion (z)
- size of the ion (a₀)
- temperature

The ionic strength of a solution is related to solution composition by the following expression:

$$I = 0.5 \Sigma c_i z_i^2$$

where c_i is the molar concentration of each ion and z_i is the ionic charge on each ion.

There are several approaches to predicting activity co-efficients summarized below;

1. For dilute solutions (I < 0.005 M), use the **Debye-Huckel equation**:

$$\log \gamma_{\rm DH} = - A z^2 \sqrt{I}$$

or for somewhat more concentrated solutions (I < 0.1 M)

$$\log \gamma_{\rm DH} = \frac{-A z^2 \sqrt{I}}{1 + B a_o \sqrt{I}}$$

where A and B are constants, z is the ionic charge and a_o is the hydrated ion radius. At 20°C, A=0.505 and $B=0.328 \times 10^8$

2. For more concentrated solutions (I < 0.5 M) use the **Davies equation**:

$$\log \gamma_{\text{Davies}} = - \text{A } z^2 \left(\frac{\sqrt{\text{I}}}{1 + \sqrt{\text{I}}} - 0.3 \text{ I} \right)$$

3. More elaborate models allow for the prediction of activity co-efficients in more concentrated solutions such as seawater, I > 0.1 M. For example the **extended Debye-Huckel treatment**, which requires the use of several ion specific parameters (a_0 and b, see below) is given by:

$$\log \gamma = \frac{-Az^2 \sqrt{I}}{1 + Ba_o \sqrt{I}} + bI$$

ao is the hydrated ion radius (see accompanying table)

b is a calculated value available for major ions only (see accompanying table)

Ion parameters for use in the extended Debye-Huckel equation

Ion	Hydrated Ion Radius a _o x 10 ⁻⁸	b
	$a_0 \times 10^{-8}$	
Ca ²⁺	6	0.165
Mg^{2^+}	8	0.20
Na ⁺	4	0.075
K ⁺	3	0.015
Mg^{2+} Na^{+} K^{+} Al^{3+}	9	
Fe^{3+}	9	
H^{+}	9	
Mn ²⁺ Fe ²⁺	6	
Fe^{2+}	6	
Li ⁺	6	
Li ⁺ Sr ²⁺	5	
Ba^{2^+}	5	
NH ₄ ⁺	3	
Cl ⁻	3	0.015
SO_4^{2-}	4	-0.04
$C1^{\circ}$ $SO_4^{2^{\circ}}$ HCO_3° $CO_3^{2^{\circ}}$ $S^{2^{\circ}}$	4	0
CO_3^{2-}	5	0
S^{2-}	5	
PO_4	4	
OH	3	
F ⁻	3	
Br ⁻	3	
NO ₃	3	