Rules For Assigning Oxidation States

1. For free elements the oxidation state is zero.

$$
\text { e.g. } \quad \mathrm{Fe}(\mathrm{~s}), \mathrm{O}_{2}(\mathrm{~g}), \mathrm{O}_{3}(\mathrm{~g}), \mathrm{H}_{2}(\mathrm{~g}), \mathrm{Hg}(\mathrm{l}), \mathrm{Hg}(\mathrm{~g}), \mathrm{S}(\mathrm{~s}) \text { etc. }
$$

2. For monoatomic ions, the oxidation state is given by the charge on the ion.

$$
\text { e.g. } \mathrm{Cl}^{-}(-1), \mathrm{Fe}^{2+}(+2), \mathrm{Fe}^{3+}(+3), \mathrm{S}^{2-}(-2), \mathrm{Ca}^{2+}(+2), \mathrm{H}^{+}(+1) \text { etc }
$$

3. Certain elements when present in compounds have common oxidation states.
a) alkali metals $\left(\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}\right)$are always $+\mathbf{1}$
b) alkali earth metals $\left(\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}\right)$ are always +2
c) hydrogen is $\mathbf{+ 1}$ (except in metal hydride compounds such as LiH)
d) oxygen is -2 (except in peroxides such as $\mathrm{H}_{2} \mathrm{O}_{2}$)
e) halogens ($\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$) are usually $\mathbf{- 1}$ (exceptions include interhalogen compounds e.g., in $\mathrm{Cl}_{2} \mathrm{~F}_{7}$, chlorine is +7 and fluorine is $\mathbf{- 1}$ and oxyanions e.g., in $\mathrm{ClO}_{3}{ }^{-}$chlorine is $\mathbf{+ 5}$)
4. The sum of the oxidation states in a molecule is zero.

$$
\text { e.g. } \mathrm{H}_{2} \mathrm{O}(+\mathbf{1})+(+\mathbf{1})+(-2)=0 \quad \mathrm{Fe}(\mathrm{OH})_{2} \quad(+2)+2(-2)+2(+\mathbf{1})=0
$$

5. The sum of the oxidation states in an ion is equal to the charge on the ion.

$$
\text { e.g. } \mathrm{OH}^{-}(-2)+(+1)=-1 \quad \mathrm{SO}_{4}^{2-}(+6)+4(-2)=-2
$$

Note: Oxidation corresponds to an increase in the oxidation state and reduction corresponds to a a decrease in the oxidation state.

Sample Exercises:

1. Determine the oxidation states for all of the atoms in each of the following:
a) $\mathrm{NO}_{3}{ }^{-}, \mathrm{NH}_{3}, \mathrm{NH}_{4}{ }^{+}, \mathrm{N}_{2}$
b) $\mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{SO}_{3}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{SO}_{4}$
c) $\mathrm{ClO}_{4}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{ClO}^{-}$
d) $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CHO}$
2. Indicate whether the following processes involve oxidation or reduction
a) $\mathrm{SO}_{4}{ }^{2-}--->\mathrm{H}_{2} \mathrm{~S}$
b) $\mathrm{NH}_{4}{ }^{+}--->\mathrm{NO}_{3}$
c) $\mathrm{NaClO}---->\mathrm{Cl}^{-}$
d) $2 \mathrm{Cu}^{+}---->\mathrm{Cu}^{2+}+\mathrm{Cu}$
3. In the following reactions identify the species that is oxidised and that being reduced.
a) $\mathrm{IO}_{4}^{-}+\mathrm{I}^{-}+\mathrm{H}^{+}--->\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}$
b) $\quad \mathrm{NO}_{3}^{-}+\mathrm{H}^{+}+\mathrm{Cl}^{-}--->\mathrm{NO}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
c) $\quad \mathrm{NO}_{3}^{-}+\mathrm{Cu}+\mathrm{H}^{+}--->\mathrm{NO}_{2}+\mathrm{Cu}^{2+}+\mathrm{H}_{2} \mathrm{O}$

Solutions

1.

a) (+V), (-III), (-III), (0)
b) (-II), (+IV), (+II), (+VI) on sulfur
c) $(+\mathrm{VII}),(+\mathrm{V}),(+\mathrm{III}),(+\mathrm{I})$
d) (+IV), (+IV), (-III and -I), (-III and +I)
2.
a) reduction
b) oxidation
c) reduction
b) both (disproportionation)
3. oxidized reduced
a) $\mathrm{I}^{-} \quad \mathrm{IO}_{4}^{-}$
b) $\mathrm{Cl}^{-} \quad \mathrm{NO}_{3}^{-}$
c) $\mathrm{Cu} \quad \mathrm{NO}_{3}^{-}$

