Question 1:

Compute the determinant

$$\left|\begin{array}{ccccc} 3 & 2 & -1 & 2 \\ 1 & 0 & -1 & 2 \\ 2 & 2 & -1 & 0 \\ 3 & 2 & -1 & 2 \end{array}\right|.$$

Question 2

Prove (disprove) that

$$|A+B| \neq |A| + |B|.$$

Hint: use two matrices

 $\begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} -2 & 4 \\ 3 & 5 \end{bmatrix}.$

.

Question 3:

Let $\overline{u} = (1, -1, 1)$ and $\overline{v} = (2, 1, -1)$.

1. Compute

$$(\overline{u} + \overline{v}) \cdot (\overline{u} - \overline{v})$$

2. Find the angle between two vectors \overline{u} and \overline{v} .

Question 4

Use Cramer's Rule to solve the system

$$x_1 - x_2 - 2x_3 = 1$$
$$x_1 - 2x_3 = 2$$
$$x_2 - 2x_3 = 0.$$

Question 5:

Find A^{-1} by using two methods: the Cofactor Formula and Gauss-Jourdan algorithm.

$$A = \left[\begin{array}{rrr} 1 & 2 & 0 \\ -1 & 1 & 0 \\ -1 & -2 & 1 \end{array} \right].$$

Question 6

Let $\overline{u} = (3, -1, 0)$, $\overline{v} = (4, 0, 1)$ and $\overline{x} = (-2, 2, 1)$. Find two scalars α and β such that $\alpha \overline{u} + \beta \overline{v} = \overline{x}$.

Question 7

Find such scalars a and b that A is a singular matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & a \\ a & 1 & 0 \\ -1 & -2 & b \end{array} \right].$$

Question 8

Given three vectors \overline{u} , \overline{v} , \overline{w} and a scalar α . Decide which operation is defined:

- 1. $\overline{u} \cdot \overline{v} \cdot \overline{w}$
- 2. $\overline{u} \cdot \alpha$
- $3.\|\overline{u}\cdot\overline{v}\|$
- $4. \|\overline{u} + \overline{v}\|.$