Question 1:

Use Gauss-Jordan Method to solve the system

$$x +y -2z = -2$$

$$3x -4z = 0$$

$$3x -4y +3z = -5.$$

Question 2

For the given matrices

$$A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \quad B = \begin{bmatrix} c \\ 0 \end{bmatrix} \quad M = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 3 & 3 \\ -1 & -2 & -1 \end{bmatrix}$$

Perform (if possible!) the following computations: A^3 , MA, AM, BM, NB, BN, M^TA , MN and NM.

Question 3

Determine the value of a (if any) for which the system has infinitely many solutions

Question 4:

Let A and B are two 2 by 2 matrices. State the condition for AB to be a symmetric matrix.

Question 5:

Let

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ -1 & 2 & 1 \end{bmatrix}.$$

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}.$$

Use A and B to prove that

$$(AB)^T = A^T B^T$$

$\begin{array}{c} {\rm Math}\ 141\ \hbox{- Sample Test}\ 1\\ {\rm Jan}\ 2020 \end{array}$

Question 6:

- 1. Prove/disprove the following statement: If A^2 is a symmetric matrix, then A is symmetric as well.
- 2. State conditions for $(A + B)^T = A^T + B^T$.
- 3. State conditions for $A^2 B^2 = (A + B)(A B)$ be a true statement.