Math 191 - Sample Test 3 Nov 2014 -
\square
name (printed)
student number
\square

> I have read and understood the instructions below:
> signature

Question 1 (Technique):
[] Differentiate
(1) $f(t)=\frac{\ln (3-t)}{1+\log _{2} t}$
(2) $f(x)=\sqrt{e^{-a x}}$
(3) $f(x)=x \log _{5}(3 x-1)$
(4) $f(x)=x^{\pi}+\pi^{x}$.
(5) Use logarithmic differentiation to find the derivative of $y=(\sqrt{x})^{x}$ and express it as a function of x only.

Question 2(High order derivatives):
[]

$$
f(x)=\ln \left(x+\sqrt{1+x^{2}}\right)
$$

Compute $f^{\prime \prime}(0)$.

Question 3 (Newton Method)):

[]
Use Newton's method to approximate $\sqrt[4]{19}$ to two decimal places. Use 2 as the initial estimate.

Question 4 (Implicit):

[]
Use implicit differentiation to find an equation of the tangent line to $y^{2}+x y-x^{2}=5$ at the point $(4,3)$.

Question 5 (Properties of \log and expo functions):
(1)[] Solve

$$
e^{1-x}=3
$$

(2)[] Solve

$$
\ln (1-x)=-\ln (1+x)
$$

(3)[] Find the range of

$$
f(x)=3-e^{-2 x}
$$

Question 6(Inverses):
[] $f(x)=e^{3-\ln x}$. Find $f^{-1}(x)$.

Question 7() :

[]
Find the point elasticity of the demand equation $p=\frac{800}{2 q+1}$ for $q=24$, and determine whether the demand is elastic, inelastic or has unit elasticity.

