Math 251 - Sample Test 1

Question 1:

Solve (i)

$$
\frac{d y}{d x}=\frac{x^{2}-y^{2}}{2 x y}, y(1)=1
$$

(ii)

$$
x y \frac{d y}{d x}=2 x-y^{2} .
$$

(iii)

$$
(1-\ln x) d y=\left(1+\ln x+\frac{y}{x}\right) d x
$$

(iv)

$$
\frac{d x}{d t}=(x+t+3)^{2}
$$

Question 2

The population of a species of elk in Canada has been monitored for some years. When the population was 600 , the relative birth rate was found to be 35 percent and the relative death rate was 15 percent. As the population grew to 800 , the corresponding figures were 30 percent and 20 percent. Write a differential equation to model the population as a function of time, assuming that relative growth rate is a linear function of population.

Math 251 - Sample Test 1

Jan 2016
Question 3 Without solving the DE
[points]

$$
\frac{d y}{d t}=a y+b y^{2}
$$

$a>0$ and $b>0$, a) Find the equilibria. b) Graph the solution curves for : $y(0)=0, y(0)=1$, $y(0)=-a / 2 b$, and $y(0)=-a$.

Question 4

Problem 1.

When a cold drink is taken from a fridge its temperature is 5 degrees C. After 25 minutes in a 20 degree C room, its temp increased to 10 degrees C. what the temperature of the drink after 50 minutes. When will the temperature be 15 degrees C ?

Problem 2.

Suppose the population of wolves in a national park grows according to the logistic differential equation

$$
\frac{d P}{d t}=0.01 P(100-P)
$$

a) If $P(0)=20$, solve for P as a function of t.

Use your answer to find P when $t=3$ years. Use your answer to find t when $P(t)=80$ animals.

Which of the following statements are true?

1. The growth rate of the wolf population is greatest when $P=50$.
2. If $P>100$, the population of wolves is increasing.

Problem 3.

Consider a tank with 200 liters of salt-water solution, 30 grams of which is salt. Pouring into the tank is a brine solution at a rate of 4 liters/minute and with a concentration of 1 grams per liter. The well-mixed solution pours out at a rate of 5 liters/minute. Find the amount at time t .

