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Potential impact of the research 
 

• Enhance the reputation of VIU through the international conferences and 
workshops  
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• Involves collaboration with VIU ( Dr. Allan Gibson, Biology Department), and 
outside VIU. 

  

• We have preliminary agreements to start collaboration with  

       Michael C. Mackey Joseph Morley Drake Professor of Director of the Centre for              
Applied Mathematics in Bioscience and Medicine 

Research Areas 

Biological, physical and economic systems whose dynamics are described by 
delay- differential or functional differential equations. 

Current biological research includes: 

  An examination of hematological dynamics in cyclical neutropenia  

  Modeling periodic chronic myelogenous leukemia  

  Modeling of the regulation of the Lac operon  

• Publishing articles in scientific journals and international conferences 
proceedings.  

• Has potential to attract more graduate and undergraduate students from UBC, 
SFU and UVic.  

 

Research abstract  
  
The broad goal of this work 
  
a) Develop new Tumor Growth Models with Angiogenesis and Chronic Myelogenous 

Leukemia  with Time Lags  

b) Create a network of specialists in Mathematical Modeling (Workshops and 
Collaboration). 

c) Train HQP in Biology and help top undergraduate students to start a research 
program. 

 
In the limited scope of the present proposal, short-term objectives are focused on: 

a) Introduction of a new equilibrium delayed models of Chronic Myelogenous 
Leukemia and Tumor Growth Models with Angiogenesis 

b) Theoretical studies of the qualitative behaviour of the mathematical models, 
interpretation of our mathematical findings and possible implementation of the 
developed models. 

c)    Give a start up for undergraduate students involved in Biology. 
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OUTLINE OF THE PROPOSED RESEARCH PROGRAM 
 
Mathematical modeling and simulation can potentially provide insight into the underlying 
causes of tumor invasion and metastasis, help understand clinical observations, and be of 
use in designing targeted experiments and assessing treatment strategies. 
Angiogenesis is the process which enables a solid tumor to make the transition from the 
relatively harmless, and localized, avascular state to the more dangerous vascular state, 
wherein the tumor possesses the ability to invade surrounding tissue and metastasize to 
distant parts of the body with the assumption that cellular feeding is controlled only by 
diffusive processes, i.e. that the tumor is in a pre-vascular stage.  
To incorporate the spatial effects of the diffusion factors that stimulate and inhibit 
angiogenesis, the following two-compartmental model for cancer cells and vascular 
endothelial cells was developed. 
According to , a stimulator/inhibitor tumor growth dynamics should provide a time 
dependent carrying capacity under angiogenic control and include the distinct 
mechanisms for angiogenic stimulation and inhibition. Let x(t) be the tumor mass and 
K(t) be a variable carrying capacity, that is defined as the effective vascular support 
provided to the tumor as reflected by the size of the tumor potentially sustainable by it. 
 
2. Outline of proposed research 
To model processes in nature it is frequently 
required to know system states from the past i.e. models incorporating memory . 
Depending on the phenomena under study the after-effects represent duration of some 
hidden processes, e.g. time lags of transit through one state to another; transit time 
through compartments, or time lags associated with the growth rates (cell division). 
In general, delay differential equations (DDE) provide 
a richer mathematical framework (compared with ordinary differential 
equations) for the analysis of biosystems dynamics. 

Chronic myelogenous leukemia is cancer that starts inside bone marrow, the soft tissue 
inside bones that helps form blood cells. The cancer grows from cells that produce white 
blood cells. Chronic leukemia progresses more slowly than acute leukemia; and allows 
greater numbers of more mature, functional cells to be made. CML causes rapid growth 
of the immature blood-forming cells (myeloid precursors) in the bone marrow, blood, and 
body tissues. The accelerated phase is a more dangerous phase, during which the 
leukemia cells grow more quickly. The important characteristics of the dynamics are the 
existence of a slow-progressing chronic phase, the following instability, and with a very 
rapid transition to the acute phase. Chronic myelogenous leukemia is grouped into 
several phases: Chronic, Accelerated and Blast crisis. The chronic phase can last for 
months or years, but the chronic phase of pCML (Periodic Chronic Myelogenous 
Leukemia) differs slightly in that the chronic phase involves periodic oscillations with a 
period of about three months. 
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The important feature of the mathematical models of angiogenesis is the self-limiting 
growth phenomena; such properties are exhibited by Gompertz and logistic models in 
which the growth is limited by the carrying capacity. Hahnfeldt et al. (1999) proposed to 
define the Gompertz and logistic carrying capacity, which constrains the tumor growth, 
as a varying tumor volume sustainable by the vessels, approximately proportional to the 
vessel volume. 

Although the equation proposed by Hahnfeldt to model the tumor growth appear similar 
to the Gompertz equation, the carrying capacity is not constant but varies with changes of 
the volume of the vessels. The dynamics of the growth of the vessel volume represented 
by its doubling time depend on the stimulators of angiogenesis, inhibitory factors 
secreted by tumor cells and natural death rate of the endothelial cells. In Hahnfeldt et al. 
(1999) it has been assumed that the inverse of the doubling time is the sum of these three 
factors. 

Considering factors influencing growth and decay of tumor vasculature, Hahnfeldt et al. 
(1999) asserted that tumor-driven inhibitors from all sites act systemically, whereas 
tumor-derived stimulators act locally. On the other hand analyzing a diffusion–
consumption equation for the concentration of stimulator or inhibitor inside and outside 
the tumor, Hahnfeldt et al. (1999) concluded that the inhibitor influences target 
endothelial cells in the tumor at a rate that grows ultimately as the area of the active 
surface between the tumor and the vascular network which in turn is propotional to the 
square of the tumor diameter. This leads to the conclusion that the inhibitory factor is 
proportional to the power 2/3 of tumor volume since the volume is proportional to the 
cube of the diameter. The modification of this model proposed by D'Onofrio and 
Gandolfi (2004) assumes that the effect of stimulators and natural mortality on the 
inverse of the doubling time is constant while the effect of inhibitors is proportional to 
the active surface of the area of tumor being in contact with the vascular network and 
therefore to the square of the tumor radius. Combinations of tumor growth models given 
by Gompertz-type and logistic-type equations with vascular network models proposed by 
Hahnfeldt et al. (1999) and D'Onofrio and Gandolfi (2004) result in four nonlinear 
models of tumor angiogenesis. Ergun et al. (2003) proposed yet another simplified 
model: in which the growth of the vascular network is independent of the tumor size. 
Nevertheless to obtain a complete model of the tumor growth in the vascular stage we 
should add one of the two proposed previously models of growth (Gompertz or logistic-
type). The interesting finding is that all these models have the same nontrivial 
equilibrium point. The models are strongly nonlinear but by a logarithmic change of 
variables and scaling transformations, it is possible to simplify them and find their 
asymptoptic properties using the standard Lyapunov type analysis of stability (local and 
global) following the line of reasoning presented in D'Onofrio and Gandolfi (2004). 

Application of antiangiogenic therapy can be incorporated in the model using a factor 
multiplicatively increasing the death rate of the vessels. For the constant dose of the drug 
it is possible to find a dose such that the equilibrium point is equal to zero. According to 
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the conditions of stability given in D'Onofrio and Gandolfi (2004) this leads to the 
conclusion that the vascular network and in turn the tumor can be eradicated. This 
conclusion is crucial for the analysis. It is enough to ensure that the population of 
endothelial cells responsible for angiogenesis behaves in a required way, because the size 
of tumor population tracks similar transients. In D'Onofrio and Gandolfi (2004) it has 
been proven that the same effect might be reached for periodic therapy with mean value 
satisfying an equality or nonequality condition, which is however generally only 
necessary. It is not sufficient, since the original Hahnfeldt model of eradication of the 
tumor depends on the shape of pulses in the periodic protocol. For some other models, 
this condition is necessary and sufficient. 

Although during simulation all the models discussed lead to similar behavior if 
uncontrolled, their behavior in the presence of control, corresponding to different 
therapeutic protocols, may differ significantly. Moreover, clinical interpretation of the 
results also depends on the choice of the model. 

Another class of models based on ordinary differential equations was proposed and 
analyzed by Agur and coworkers ([Agur et al., 2004], [Arakelyan et al., 2002], 
[Arakleyan et al., 2005] and [Forys et al., 2005]). The main purpose of these models is to 
reflect instability of the newly formed vessels structure. The models consist of a module 
of tumor dynamics and two others, the angiogenesis and vessel maturation modules, 
coupled through the action of regulatory proteins. The model simulations demonstrate the 
role of micro-environmental conditions in the metastatic potential of the tumor. The 
simplified version of the model enables analytical considerations, which reflect instability 
and cycles observed in the angiogenesis process. The drawback of this class of models is 
that they do not reproduce the stable behavior observed in less aggressive tumors. 

 
 (1) 
  
 
The model (1) would allow us to examine a variety of interesting questions. For example, 
It is interesting to compare dynamics presented by three model. 
Do any of those models exhibit CML dynamics: After a relatively quick rise in the cell 
count, the system reaches a seemingly steady state. After several years, this steady state 
gives rise to oscillatory instability. Finally, this leads  to a sharp, usually fatal, increase in 
the cell count. 
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3. Methods of investigation 
Qualitative and theoretical methods: optimization of dynamical systems, equilibrium 
analysis, stability and oscillation theorems for systems of ordinary differential equations. 

Numerical methods: Computer simulations using Matlab and other modern scientific 
software packages.  
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Timelines: 
 
• Jan-Feb: to analyse and develop certain models of, develop and mathematically 

justify a new methodology of studying non-linear models, based on a new model. 

•       Feb-April :  perform numerical simulations and qualitative analysis of the proposed 
models   
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• May-June  a two-week trip to the Centre for Applied Mathematics in Bioscience and 
Medicine, Department of Physiology, McGill University to discuss the project 

•        Sep-Nov finalize all proofs and details preparation the obtained results for 
publication  

•        Dec 2012 preparation of the final report to the Committee. 
 
 


