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For the blood cell production model with a unimodal (hump) feedback function
dy
dt
¼ �cyðtÞ þ bhnyðt � sÞ

hn þ ynðt � sÞ ;
we review the known results and investigate generalizations of this equation. Permanence,
oscillation and stability of the positive equilibrium are studied for non-autonomous equa-
tions, including equations with a distributed delay. In addition, a linear control is intro-
duced, and possibilities to stabilize an otherwise unstable positive equilibrium are
explored.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction and basic Mackey–Glass models

To explain regulation and control mechanisms in physiological systems, Mackey and Glass pioneered new mathematical
models in the influential and highly referenced paper [38]. To describe the Cheyne–Stokes phenomenon, the following model
was introduced:

Model 1 (Respiratory Dynamics)
dy
dt
¼ k� aVmyðtÞynðt � sÞ

hn þ ynðt � sÞ :
To model hematopoiesis (the process of production, multiplication, and specialization of blood cells in the bone marrow),
two equations were proposed since the nature of the regulatory mechanisms in blood cell production is controversial:

Model 2 (Hematopoiesis with a Monotone Production Rate)
dy
dt
¼ �cyðtÞ þ F0h

n

hn þ ynðt � sÞ ;
as well as Model 3 (Hematopoiesis with Unimodal Production Rate)
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dy
dt
¼ �cyðtÞ þ bhnyðt � sÞ

hn þ ynðt � sÞ ; ð1:1Þ
where yðtÞ is the density of cells in the circulation, s is the maturation delay between the start of the production of immature
cells in the bone marrow and their release into circulation, h > 0 is called a shape parameter, c is the destruction rate, b > 0
and n > 0. The parameters of the models are nonnegative constants and have to be determined from experimental data re-
lated to hematopoiesis production. For detailed biological motivation we refer the reader to [18,38–40].

The present paper is devoted to asymptotic properties (permanence, stability of the positive equilibrium, oscillation and
stabilization) of (1.1) and some of its generalizations. The review of the recent results for Models 1 and 2 can be found in
[11,12]. Eq. (1.1) after the substitution xðtÞ ¼ hyðtÞ has the form
dx
dt
¼ �cxðtÞ þ b

xðt � sÞ
1þ xnðt � sÞ ; t > 0; ð1:2Þ
where the initial function u is associated with (1.2) for t 6 0: xðtÞ ¼ uðtÞ, where u 2 C½½�s;0�;Rþ� and uð0Þ > 0, here
Rþ ¼ ½0;1Þ;C½D;R� is the space or real continuous functions f : D! R.

Along with classical Mackey–Glass model (1.1), the following modifications were introduced and studied in the literature.

1. In [4,5,7,51,52,55] the non-autonomous Mackey–Glass equation
dx
dt
¼ �cðtÞxðtÞ þ bðtÞ xðt � sðtÞÞ

1þ xnðt � sðtÞÞ ð1:3Þ
was studied, where c; b 2 C½Rþ; ð0;1Þ�; s 2 C½Rþ;Rþ�.
2. In [26,54,56] the integro-differential non-autonomous model
dx
dt
¼ �cðtÞxðtÞ þ bðtÞ

Z 1

0

PðrÞxðt � rÞdr
1þ xnðt � rÞ ð1:4Þ
was investigated, where c; b 2 C½Rþ; ð0;1Þ�; P : Rþ ! Rþ is assumed to be piecewise continuous,
R1

0 PðsÞds ¼ 1.
3. In [10,16] the equation with a distributed delay
dx
dt
¼ �rðtÞ cxðtÞ � b

Z t

hðtÞ

xðsÞ
1þ xnðsÞdsRðt; sÞ

" #
; ð1:5Þ
with c > 0; b > 0 was considered, where r satisfies
r 2 L1½Rþ;Rþ�;
Z 1

rðsÞds ¼ 1: ð1:6Þ
Here L1 is the space of essentially bounded functions, and Rðt; �Þ is a left continuous function such that
Rðt; �Þ is nondecreasing ; Rðt; sÞ ¼ 0; s 6 hðtÞ; Rðt; tþÞ ¼ 1 for any t ð1:7Þ
for some Lebesgue measurable function h satisfying hðtÞ 6 t; limt!1hðtÞ ¼ 1.

If Rðt; sÞ ¼ vðhðtÞ;1ÞðsÞ, where vI is the characteristic function of set I, then (1.5) takes the form
dx
dt
¼ �rðtÞ cxðtÞ � b

xðhðtÞÞ
1þ xnðhðtÞÞ

� �
: ð1:8Þ
For Rðt; sÞ ¼ vðt�s;1ÞðsÞ; rðtÞ � 1, we obtain Eq. (1.2). If Rðt; sÞ ¼
R s

hðtÞ Pðt; sÞds, then (1.5) is the integro-differential equation
dx
dt
¼ �rðtÞ cxðtÞ � b

Z t

hðtÞ

Pðt; sÞxðsÞ
1þ xnðsÞ ds

" #
; ð1:9Þ
where
R t

hðtÞ Pðt; sÞds � 1. We consider Eq. (1.5) with the initial condition
xðtÞ ¼ uðtÞ; t 6 0; ð1:10Þ
where
u 2 C½ð�1;0�;Rþ� is bounded; uð0Þ > 0 ð1:11Þ
(under this condition, the Lebesgue–Stieltjes integral in the right-hand side of (1.5) exists for any Rðt; sÞ as described above).
It is important to remark that all results obtained in the present paper for Eq. (1.5) are also valid for Eqs. (1.8) and (1.9)

with the same r;h; c and b.
The paper is organized as follows. In Section 2, for non-autonomous models with both concentrated and distributed de-

lays, we examine existence, positivity and permanence of global solutions. In Section 3, global stability conditions for auton-
omous models are reviewed, and new stability results for non-autonomous equations with asymptotically constant



6270 L. Berezansky et al. / Applied Mathematics and Computation 219 (2013) 6268–6283
parameters are obtained. Oscillation and non-oscillation about the positive equilibrium are examined in Section 4. Section 5
explores the possibility of stabilization with linear non-delayed and delayed types of control. Results obtained for some mod-
ifications of the Mackey–Glass model are described in Section 6. Finally, discussion and a list of open problems and conjec-
tures are presented in Section 7.

2. Existence, boundedness and permanence

Definition 2.1 [23]. An equation is uniformly permanent if there exist positive numbers l and M such that
lim inf
t!1

xðtÞP l; lim sup
t!1

xðtÞ 6 M
for any solution xðtÞ of the equation. A positive solution x is persistent if lim inf t!1xðtÞ > 0. A persistent solution is perma-
nent if in addition it is bounded.

In [4] Eq. (1.3) in the form
dx
dt
¼ �cðtÞxðtÞ þ bðtÞxðhðtÞÞ

1þ xnðhðtÞÞ ; ð2:1Þ
with initial conditions (1.10) was examined, under the following assumptions:

(a1) n > 0; bðtÞP 0; cðtÞP 0 are Lebesgue measurable essentially locally bounded functions;
(a2) h is a Lebesgue measurable function, hðtÞ 6 t; limt!1hðtÞ ¼ 1;
(a3) u : ð�1;0Þ ! R is a Borel measurable bounded function, uðtÞP 0 and uð0Þ > 0;
(a4) lim inf t!1cðtÞP c > 0.

Eq. (2.1) is a partial case of the equation with a distributed delay
dx
dt
¼ �cðtÞxðtÞ þ bðtÞ

Z t

hðtÞ

xðsÞ
1þ xnðsÞdsRðt; sÞ: ð2:2Þ
By the solution of (2.2) with initial function (1.10) we understand the function which satisfies (2.2) almost everywhere for
t P 0 and (1.10) for t < 0.
Theorem 2.2. Let (a1), (a2), (a4),(1.7) and (1.11) hold. Then Eq. (2.2) with initial conditions (1.10) has a positive global solution
on ½0;1Þ.

Proof. Existence of a positive local solution x of (2.2) follows from [8, Theorem 1]. Suppose that ½0; cÞ is the maximal exis-
tence interval for the solution x. This can be either a global solution (c ¼ 1), or one of the equalities limt!c�xðtÞ ¼ �1 or
limt!c�xðtÞ ¼ 1may hold. As far as xðtÞ > 0, a solution of (2.2), (1.10) is not less than the solution of the initial value problem
dv
dt ¼ �cðtÞvðtÞ;vð0Þ ¼ uð0Þ > 0,which is positive and global. To complete the proof, we should only exclude the possibility
limt!c�xðtÞ ¼ 1. Denote M ¼ supt60uðtÞ > 0 and yðtÞ ¼maxfsup0<s6txðsÞ;Mg, here M <1 due to (1.11) and yð0Þ ¼ M. We
have
dx
dt
6 bðtÞ

Z t

hðtÞ
xðsÞdsRðt; sÞ 6 bðtÞyðtÞ; t 2 ½0;1Þ:
Hence
xðtÞ 6 xð0Þ þ
Z t

0
bðsÞyðsÞds 6 M þ

Z t

0
bðsÞyðsÞds; t 2 ½0;1Þ:
Then
yðtÞ 6 M þ
Z t

0
bðsÞyðsÞds:
So, by the Gronwall–Bellman inequality,
xðtÞ 6 yðtÞ 6 Me
R t

0
bðsÞds

:

Therefore x cannot satisfy limt!c�xðtÞ ¼ 1 for any finite c, which concludes the proof. h

Theorem 2.3. [4, Theorem 2] Suppose (a1)–(a4) hold, either n P 1 or
0 < n < 1 and sup
tP0

Z t

hðtÞ
cðsÞds <1:
Then any solution of (2.1), (1.10) is bounded for all t > 0.
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The following example illustrates the importance of condition (a4) in the assumptions of Theorem 2.3.

Example 2.4. Let n ¼ 1
2 ; bðtÞ ¼ 1;hðtÞ ¼ t, cðtÞ ¼ 1

1þ
ffiffiffiffiffi
ln t
p � 1

t ln t ; t P 3. All the conditions of Theorem 2.3 but (a4) hold, however
the unbounded function xðtÞ ¼ ln t is a solution of Eq. (2.1).
Theorem 2.5. [4, Theorem 3] (1) Suppose (a1)–(a3) hold and
inf
t<0

uðtÞ > 0; uð0Þ > 0; lim inf
tP0

bðtÞ
cðtÞ ¼ k > 1: ð2:3Þ
Then any bounded solution of (2.1), (1.10) is persistent.
(2) Suppose (a1)–(a4) and (2.3) hold and either n P 1 or
0 < n < 1 and sup
tP0

Z t

hðtÞ
cðsÞds <1:
Then any solution of (2.1), (1.10) is persistent.
For the general equation
x0ðtÞ ¼ rðtÞ
Z t

hðtÞ
f ðxðsÞÞdsRðt; sÞ � xðtÞ

" #
; t P 0; ð2:4Þ
the uniform permanence result was obtained in [16].

Lemma 2.6 [16, Theorem 2.6]. Let (1.6), (1.7), (a2) and (1.11) be satisfied, f : Rþ ! Rþ be a continuous function, f ðxÞ > x for
0 < x < K and 0 < f ðxÞ < x for x > K. Then Eq. (2.4) is uniformly permanent, and any solution of (2.4) satisfies
lim inf
t!1

xðtÞP l; lim sup
t!1

xðtÞ 6 M; ð2:5Þ
where
M ¼ max
x2½0;K�

f ðxÞ; l ¼ min
x2½K;M�

f ðxÞ: ð2:6Þ
Let f ðxÞ ¼ bx
cð1þxnÞ, where n > 0 and b > c. If 0 < n 6 1, then on the interval ½0;K� the function f ðxÞ has its maximum

K ¼ b
c � 1
� �1

n
at x ¼ K; if n > 1 then f ðxÞ attains its maximum M ¼ b

nc ðn� 1Þ1�1=n at x ¼ ðn� 1Þ�1=n. We immediately obtain

the following result.
Theorem 2.7. Let (1.6), (1.7), (a2) and (1.11) be satisfied, b > c > 0. If 0 < n 6 1, then all solutions of (1.5), (1.10) are uniformly
permanent and converge to the unique positive equilibrium K. If n > 1 then any solution of (1.5), (1.10) satisfies (2.5) with
M ¼ b
nc
ðn� 1Þ1�1=n

; l ¼min
b
c
� 1

� �1=n

;
bM

cð1þMnÞ

( )
: ð2:7Þ
If in addition b
c >

n
n�1, then l ¼ bM

cð1þMnÞ.
Consider model (1.3), where c; b 2 C½Rþ; ð0;1Þ�; s 2 C½Rþ;Rþ�, and c; b; s are all x�periodic functions. Existence of posi-

tive periodic solutions for different modifications of (1.3) was examined in [5,26,49,51,52,54–57].

Theorem 2.8. [51, Corollary 3.3] [52,55] Let
Rx

0 cðsÞds > 0 and min06t6x½bðtÞ � cðtÞ� > 0; then there exists at least one positive
periodic solution of Eq. (1.3).

For model (1.4) the following result was obtained in [26, Corollary 3.3] and [54, Theorem 4.1].

Theorem 2.9. Let c 2 C½R;R�; b 2 C½R; ð0;1Þ�; c; b be x�periodic functions,
Rx

0 cðtÞdt > 0; P 2 C½ð0;1Þ;Rþ�,
R1

0 PðsÞds ¼ 1 and
min06t6x½bðtÞ � cðtÞ� > 0. Then Eq. (1.4) has at least one positive x�periodic solution.
3. Stability

Model (1.2) has the trivial equilibrium, and if we assume that b > c > 0, then Eq. (1.2) has a positive equilibrium
K ¼ b
c
� 1

� �1=n

: ð3:1Þ
Further, the following standard definitions will be used.



6272 L. Berezansky et al. / Applied Mathematics and Computation 219 (2013) 6268–6283
Definition 3.1. We will say that the equilibrium solution x ¼ K of model (1.2) is (locally) stable, if for any e > 0 there exists
d > 0 such that for every initial conditions, the inequality juðtÞ � Kj < d for t 6 0 implies jxðtÞ � Kj < e for the solution x. If, in
addition, for any such solution limt!1xðtÞ ¼ K , then the solution x ¼ K is locally asymptotically stable (LAS). The
equilibrium K is globally asymptotically stable (GAS) for initial conditions in the open set Q0 � R if it is an attractor for all
solutions xðtÞ with the initial conditions in the open set Q0 � R, i.e. limt!1xðtÞ ¼ K , and it is also locally stable.

We will use the same definition for solutions of non-autonomous equations with a positive equilibrium, if it exists. Some
helpful facts for f ðxÞ ¼ x

1þxn are listed below.

f 0ðxÞ ¼ 1�ðn�1Þxn

ð1þxnÞ2
, f 00ðxÞ ¼ nxn�1 ½�ðnþ1Þþðn�1Þxn �

ð1þxnÞ3
, f 0ðKÞ ¼ c

b2 nc� ðn� 1Þb½ �, and the inflection point is c ¼ nþ1
n�1

	 
1=n; jf 0ðxÞj has its max-

imum at either x ¼ 0 or x ¼ c; jf 0ðcÞj ¼ ðn�1Þ2
4n , jf ðxÞj 6 C, where f ðxÞ attains its maximum on ½0;1Þ at x ¼ 1=ðn� 1Þ1=n and

C ¼ ðn� 1Þðn�1Þ=n=n for n > 1, while C ¼ 1 for n ¼ 1, and f ðxÞ is unbounded for 0 < n < 1. For the equation
dx
dt
¼ �cxðtÞ þ f ðxðt � sÞÞ; ð3:2Þ
where f ðxÞ is a unimodal (see the definition in [46]) feedback function for n > 1, the following lemma is a special case of the
result obtained in [46].

Lemma 3.2 [46, Propositions 3.1 and 3.2]. If f 0ð0Þ < c, where f ðxÞ ¼ bx
1þxn, then for all s P 0 the trivial equilibrium of Eq. (3.2)

with this f is globally attractive.
The statement of Lemma 3.2 immediately implies the following result.

Theorem 3.3. If n > 1 and b < c, then the trivial solution of Eq. (1.2) is a global attractor.
Theorem 3.4. [4, Theorem 4] Suppose (a1)–(a3) hold and
lim sup
t!1

bðtÞ
cðtÞ ¼ k < 1;

Z 1

0
cðsÞds ¼ 1; sup

t<0
xðtÞ <1;
then limt!1xðtÞ ¼ 0, where xðtÞ is a solution of Eq. (2.1).
To study stability of the nontrivial equilibrium, henceforth assume that the condition
b > c
holds. For the nontrivial equilibrium K defined by (3.1), the substitution y ¼ x� K in (1.2) produces
dy
dt
¼ �cyðtÞ � b

K
1þ Kn �

yðt � sÞ þ K
1þ ðyðt � sÞ þ KÞn

� �

and the corresponding linearized equation has the form
dy
dt
¼ �cyðtÞ þ cayðt � sÞ;
where
a ¼ 1� nþ cn=b: ð3:3Þ
We will further apply Lemma 3.5 which is based on classical results (see, for example, [17,19]). Consider the linear equation
dy
dt
þ ayðtÞ þ byðt � sðtÞÞ ¼ 0; ð3:4Þ
where a > 0; b are constants, t � sðtÞ 6 s0 for some s0 > 0.

Lemma 3.5. Suppose either jbj < a or 0 < bs0 <
3
2. Then Eq. (3.4) is asymptotically stable. If sðtÞ ¼ s0 is a constant then the

inequality 0 < bs0 <
p
2 is a sufficient asymptotic stability condition for (3.4).

We immediately obtain the delay-independent stability result.

Theorem 3.6. The positive equilibrium K of Eq. (1.2) is LAS for any delay s if and only if one of the following two conditions holds:
(i) 0 < n 6 2; (ii) n > 2 and b

c <
n

n�2.
As a corollary of [16, Theorem 4.3], we deduce the result earlier obtained in [20, Theorem 2].

Theorem 3.7. If either 0 < n 6 2 or n > 2 and b
c <

n
n�2 then the positive equilibrium K of Eq. (1.2) is GAS for any delay s.

Based on Lemma 3.5, the delay-dependent condition can be expressed as follows.

Theorem 3.8. Let a be defined by (3.3). If a < 0 and �asecs < p=2, then the positive equilibrium K of (1.2) is LAS.
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Let
c0ðhÞ ¼
1
h

ln
n2 � 2nþ 2
n2 � 3nþ 2

: ð3:5Þ
In [35] the authors considered the equation
dx
dt
¼ �cxðtÞ þ b

xðt � sðtÞÞ
1þ xnðt � sðtÞÞ ð3:6Þ
with s 2 C½Rþ; ½0;h��. The proof of the following theorem is based on the earlier general result obtained in [34, Theorem 2.1].

Theorem 3.9. [35, Theorem 3.2] The positive equilibrium K is a global attractor for (3.6) if one of the following conditions holds:

(a) n 2 ð0;2�;
(b)n > 2 and c 2 ð0; c0ðhÞ�;
(c)n > 2; c > c0ðhÞ and � c

a e�hc > ln a2�ac
a2þc2 , where a is defined by (3.3).

Sufficient LAS conditions for model (1.5) were recently outlined in [10].

Theorem 3.10. [10, Theorem 6] Suppose that b > c > 0 and at least one of the following conditions holds, where a is denoted by
(3.3):

(a) b
c <

n
n�2;

(b) jajclim supt!1
R t

hðtÞ
R t

s rðsÞds
� �

dsRðt; sÞ < cðb�cÞ
bþjnðb�cÞ�bj;

(c) a < 0, or b
c >

n
n�1, ð1� aÞclim supt!1

R t
hðtÞ rðsÞds < U � 1:425;

(d) a < 0;�aclim supt!1
R t

hðtÞ rðsÞds < 1þ 1
e.

Then the positive equilibrium K of (1.5) is LAS.
For the global stability of Eq. (2.4), the following results are valid [16, Theorems 3.3–3.5].

Lemma 3.11. Let f : Rþ ! Rþ be a continuous function. If f ð0Þ ¼ 0 and f ðxÞ < x for any x > 0, then any positive solution of (2.4)
converges to zero. Further, let f ðxÞ > x for 0 < x < K and 0 < f ðxÞ < x for x > K. If all positive solutions of the difference equation
xnþ1 ¼ f ðxnÞ tend to K > 0, then all positive solutions of (2.4) converge to K. If f is three times continuously differentiable and has
the only critical point x0 > 0 (maximum), its Schwarzian derivative is negative
ðSf ÞðxÞ ¼ f 000ðxÞ
f 0ðxÞ �

3
2

f 00ðxÞ
f 0ðxÞ

� �2

< 0 for x – x0
and jf 0ðKÞj 6 1, then any positive solution of (2.4) tends to K as t !1.
Lemma 3.12. Let f 2 C½Rþ;Rþ�; f ðxÞ > x for 0 < x < K, and 0 < f ðxÞ < x for x > K. If
1� exp �lim sup
t!1

Z t

hðtÞ
rðsÞds

( )
<

1
L
; ð3:7Þ
where
L ¼max 1; sup
x2½0;2K�

f ðxÞ � f ðKÞ
x� K

���� ����
( )

; ð3:8Þ
then any positive solution of (2.4) tends to K as t !1.
It is easy to check that if at the only maximum point x0 we have f ðx0Þ < x0, there is an eventually monotone convergence

of all positive solutions of the difference equation xnþ1 ¼ f ðxnÞ to K. The proof of the following theorem is based on Lemma
3.11 and Lemma 3.12.

Theorem 3.13. [16, Theorem 3.2] If either 0 < n 6 2 or n > 2 and 1 < b
c <

n
n�2, then all positive solutions of (1.5) tend to the

positive equilibrium K as t !1. If n > 2; bc P n
n�2 and lim supt!1

R t
hðtÞ rðsÞds < � 1

c ln 1� 4cn
bðn�1Þ2þ4bc

� �
, then all positive solutions of

(1.5) tend to the positive equilibrium.
Remark 3.14. Theorem 3.13 is also valid for problem (1.8), e.g., Theorem 3.13 immediately implies a sharper result than
Theorem 4.4 in [27], which claims that 1 < b=c 6 n=ðn� 1Þ implies stability of (1.2), see the first line in Table 1.
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The equation with several delays
(2)
dx
dt
¼ �rðtÞ cxðtÞ �

Xm

j¼1

bj
xðhjðtÞÞ

1þ xnðhjðtÞÞ

" #
ð3:9Þ
with
Pm

j¼1bj ¼ b is a particular case of (1.5), where
Rðt; sÞ ¼ 1
b

Xm

j¼1

bjvðhjðtÞ;1ÞðsÞ; hðtÞ ¼ min
16j6m

hjðtÞ;
thus we immediately obtain the following corollary of Theorem 3.13.

Theorem 3.15. Let b > c > 0, (a3) hold and (a2) be satisfied for all hj; j ¼ 1; . . . ;m. If either 0 < n 6 2 or n > 2 and 1 < b
c <

n
n�2,

then all positive solutions of (3.9) tend to the positive equilibrium K as t !1.
If n > 2; bc P n

n�2 and lim supt!1
R t

minjhjðtÞ rðsÞds < � 1
c ln 1� 4cn

bðn�1Þ2þ4bc

� �
, then all positive solutions of (3.9) tend to the positive

equilibrium.
Remark 3.16. Let us note the relation between Theorems 3.13, 3.15 and 3.9 for r � 1. For n > 2 the results of Theorem 3.9
are sharper than those of Theorems 3.13, 3.15 but obtained for a single concentrated delay only. The technique of the proof in
[35] cannot be immediately extended to equations with several concentrated or, generally, distributed delays. Had Theo-
rem 3.9 been obtained for arbitrary nonnegative, not necessarily continuous, sðtÞ, stability of (3.9) and (2.4) would follow
from any of the sufficient conditions in Theorem 3.9. The fact that conditions (b) and (c) of Theorem 3.9 imply stability of
(3.9) and (2.4) is a corollary of the mean value theorem [8, Theorem 9] which claims that any solution of either (3.9) or
(2.4) also satisfies the equation
dx
dt
¼ �rðtÞ cxðtÞ � b

xðgðtÞÞ
1þ xnðgðtÞÞ

� �
;

where hðtÞ 6 gðtÞ 6 t and hðtÞ ¼min16j6mhjðtÞ in (3.9).
For Eq. (2.1), we deduce GAS by applying the following two auxiliary results: the first one is a corollary of Theorem 1 [6]

and Lemma 3.1 [9], the second one follows from Lemma 5.3 [11].

Lemma 3.17. [6,9] Consider the nonlinear delay differential equation
_xðtÞ þ f0ðt; xðtÞÞ þ
Xm

k¼1

fkðt; xðhkðtÞÞÞ þ f ðt; xðtÞ; xðgðtÞÞÞ ¼ 0; ð3:10Þ
where fkðt; �Þ and f ðt; �; �Þ are continuous functions, fkð�; xÞ and f ð�;u;vÞ are locally essentially bounded functions, fkðt;0Þ ¼ 0, there
exists d : Rþ ! ð0;1Þ such that jf ðt;u;vÞj 6 dðtÞ, limt!1dðtÞ ¼ 0. Suppose that for some given numbers x1 and x2 such that
x1 < 0 < x2, there exist ak > 0 and positive essentially bounded on ½0;1Þ functions a0ðtÞ and bkðtÞ; k ¼ 0;1; . . . ;m satisfying at
least one of the following conditions:

(1) 0 < ak 6
fkðt;xÞ

x 6 bkðtÞ; k ¼ 0;1; . . . ;m; x1 6 x 6 x2,
lim sup
t!1

Xm

k¼1

bkðtÞPm
i¼0biðtÞ

Z t

min
k

hkðtÞ

Xm

k¼0

bkðsÞds < 1þ 1
e

;

0 < a0 6 a0ðtÞ 6 f0ðt;xÞ
x 6 b0ðtÞ; fkðt;xÞ

x

��� ��� 6 bkðtÞ; k ¼ 1; . . . ;m; x1 6 x 6 x2, and there exists k 2 ð0;1Þ such that
Table 1
Sufficient global stability conditions for Model (1.2).

Karakostas et al.
[27]

1992 n > 1 and 1 < b
c 6

n
n�1

Kuang [29] 1993 n > 1 and 1 < b
c <

4n
ðn�1Þ2

Gopalsamy et al.
[20]

1998 0 < n 6 2

Gopalsamy et al.
[20]

1998 n > 2 and c 2 ð0; c0ðsÞ� c0ðsÞ ¼ 1
s ln n2�2nþ2

n2�3nþ2

Gopalsamy et al.
[20]

1998 n > 2; c > c0ðsÞ and
b
c <

2nh
2ðn�1Þh�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4hð1�hÞ
p ðh ¼ 1� e�csÞ

Liz et al. [35] 2005 n > 2; c > c0ðsÞ and

� c
a e�sc > ln a2�ac

a2þc2 ða ¼ cn=b� nþ 1 < 0Þ
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lim sup
t!1

Pm
k¼1bkðtÞ
a0ðtÞ

6 k:
Then all solutions of Eq. (3.10) satisfying the inequality x1 6 xðtÞ 6 x2 tend to zero.
Lemma 3.18 [11]. Let f ðxÞ be an increasing twice differentiable function on ½a; b�, where a < 0 < b, f ð0Þ ¼ 0. If f 00ðxÞ > 0 for
a 6 0 6 x < c; f 00ðcÞ ¼ 0 and f 00ðxÞ < 0 for c < x 6 b then
f ðxÞ
x
6 f 0ðcÞ; x 2 ½a; b�; x – 0:
If f 00ðxÞ < 0 for a < x < b then f ðxÞ
x 6 f 0ð0Þ; x 2 ½a; b�; x – 0:

Denote for n > 1
f ðxÞ ¼ bx
cð1þ xnÞ ; qn ¼

ðn� 1Þ2

4n
; �x ¼ ðn� 1Þ�1=n

; ð3:11Þ
where �x is the maximum point of f ðxÞ. We use constants l and M defined in (2.7).

Theorem 3.19. Suppose t � hðtÞ 6 s, limt!1bðtÞ ¼ b; limt!1cðtÞ ¼ c, n > 2; b
c >

n
n�1, and either bqn

c < 1 or the inequality
�x ¼ ðn� 1Þ�1=n
< l ð3:12Þ
is satisfied together with
bqns < 1þ 1
e
: ð3:13Þ
Then K is a global attractor for all positive solutions of non-autonomous Eq. (2.1).
Proof. We will show first that the inequality bqn
c < 1 implies (3.12). We have f ðKÞ ¼ K; f ð�xÞ ¼ M; f ðMÞ ¼ l. Further,

maxx>0jf 0ðxÞj ¼ bqn
c and the fact that bqn

c < 1 immediately implies that the map f ðxÞ; x > 0 is contracting. Hence
M � K ¼ jf ðKÞ � f ð�xÞj < K � �x;K � l ¼ jf ðMÞ � f ðKÞj < M � K , thus K � l < K � �x and �x < l, which coincides with inequality
(3.12).

Further, we apply Lemma 3.17 with m ¼ 1. After the substitution xðtÞ ¼ yðtÞ þ K , Eq. (2.1) takes form (3.10), where

f0ðt; yÞ ¼ cy; f 1ðt; yÞ ¼ b K
1þKn � Kþy

1þðKþyÞn
� �

, f ðt;u; vÞ ¼ ðcðtÞ � cÞuþ ðbðtÞ � bÞ K
1þKn � Kþv

1þðKþvÞn
� �

. Evidently there exists A > 0

such that in any interval ½a; b�+
jf ðt;u;vÞj 6 dðtÞ :¼ AðjcðtÞ � cj þ jbðtÞ � bjÞ for u;v 2 ½a; b�;
where limt!1dðtÞ ¼ 0. By Theorem 2.7 positive solutions of Eq. (3.10) are bounded. We have f0ðt;yÞ
y ¼ c: Denote

g1ðyÞ ¼ K
1þKn � yþK

1þðyþKÞn ; then the function g1 has the unique minimum at the point x0 ¼ ðn� 1Þ�
1
n � K. The condition b

c >
n

n�1 im-

plies x0 < 0. By Theorem 2.7, for any e > 0 we can consider the function g1 on the interval ½l� K � e;M � K þ e�, where
l� K � e > x0. Since x0 < l� K � e and the function g1 is monotone increasing on ½x0;M � K þ e�, g1 also increases on
½l� K;M � K þ e�. Next, for the function g1 we have g001ðyÞ > 0 for y < c0; g001ðyÞ < 0 for y > c, and g001ðc0Þ ¼ 0, where

c0 ¼ n�1
nþ1

� �1
n � K . By Lemma 3.18, g1ðyÞ

y 6 g01ðc0Þ ¼ qn: Denote gðtÞ ¼
g1ðyÞ

y ; y – 0;
g01ð0Þ; y ¼ 0:

�
Since the function g is a positive continu-

ous function on ½l� K;M � K þ e�, there exists a2 > 0, such that a2 6
g1ðyÞ

y . Hence
ba2 6
f1ðt; yÞ

y
6 bqn:
Finally, by Lemma 3.17, Part 1, all solutions of Eq. (3.10) tend to zero. Further, if bqn
c < 1 then, using Lemma 3.17, Part 2, we

can prove that all solutions of Eq. (2.1) tend to the positive equilibrium K. h
Corollary 3.20. If t � hðtÞ 6 s, and either bqn
c < 1, or (3.12) and (3.13) hold, then the positive equilibrium K is a global attractor for

all positive solutions of Eq. (1.8).
4. Oscillation
Definition 4.1. We will say that an equation is non-oscillatory about the positive equilibrium K if there exists a solution x
such that x� K is either eventually positive or eventually negative. Otherwise, the equation is oscillatory about K.
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To study oscillation and non-oscillation conditions for Eq. (1.8) about the positive equilibrium K, first, we quote some
lemmas which will be used in the proofs of the main results.

Lemma 4.2. [1,2,22]. If akðtÞP 0;hkðtÞ 6 t; limt!1hkðtÞ ¼ 1; k ¼ 1; . . . ;m, and lim supt!1
R t

minkfhkðtÞg
Pm

k¼1akðsÞds < 1
e, then

there exists a non-oscillatory solution of the linear delay equation
_xðtÞ þ
Xm

k¼1

akðtÞxðhkðtÞÞ ¼ 0: ð4:1Þ
If lim inf t!1
Pm

k¼1

R t
hkðtÞ

akðsÞds > 1
e, then all solutions of (4.1) are oscillatory.
Lemma 4.3. [1,3]. Consider the nonlinear delay differential equation
_xðtÞ þ
Xm

k¼1

akðtÞfkðxðhkðtÞÞÞ ¼ 0; ð4:2Þ
where akðtÞP 0;
R1Pm

k¼1akðtÞdt ¼ 1;hkðtÞ 6 t; limt!1hkðtÞ ¼ 1, fk are continuous functions, xfkðxÞ > 0; x – 0 and fkð0Þ ¼ 0. If
0 < fkðxÞ 6 x;0 < x < d or 0 > fkðxÞP x;�d < x < 0 for some d > 0, and linear Eq. (4.1) has a non-oscillatory solution, then Eq.
(4.2) also has a non-oscillatory solution. If limx!0

fkðxÞ
x ¼ 1, and for some e > 0 all solutions of the equation
_xðtÞ þ
Xm

k¼1

ðakðtÞ � eÞxðhkðtÞÞ ¼ 0
are oscillatory, then all solutions of Eq. (4.2) are also oscillatory.
Theorem 4.4. 1. Suppose one of the following conditions holds:

(a) 0 < n 6 1;
(b) n > 1; b

c 6
n

n�1;
(c) n > 1, (3.12) holds,
b
c
>

n
n� 1

; and ac lim sup
t!1

Z t

hðtÞ
e
c
R s

hðsÞ
rðsÞds

rðsÞds <
1
e
; ð4:3Þ
where a was defined in (3.3). Then Eq. (1.8) has a non-oscillatory about K solution.
2. If inequality (3.12) holds and
n > 1;
b
c
>

n
n� 1

; �ac lim inf t!1

Z t

hðtÞ
e
c
R s

hðsÞ
rðsÞds

rðsÞds >
1
e
; ð4:4Þ
then all solutions of Eq. (1.8) are oscillatory about K.
Proof. Consider the case 1(a). Let y ¼ x� K , then (1.8) has the form
dy
dt
¼ �crðtÞyðtÞ þ brðtÞ yðhðtÞÞ þ K

1þ ðyðhðtÞÞ þ KÞn
� K

1þ Kn

� �
: ð4:5Þ
Denote
f ðt; yÞ ¼ brðtÞ yþ K
1þ ðyþ KÞn

� K
1þ Kn

� �
:

Since 0 < n 6 1, the function f is monotone increasing, and yf ðt; yÞ > 0; y – 0. Consider Eq. (4.5) with the initial condition
yðtÞ ¼ y0 > 0; t 6 0; we have
yðtÞ ¼ e�c
R t

0
rðsÞdsy0 þ

Z t

0
e�c
R t

s
rðsÞdsf ðs; yðhðsÞÞÞds: ð4:6Þ
It is evident that there exists a positive local solution of Eq. (4.5) with the initial condition yðtÞ ¼ y0 > 0; t 6 0. Equality (4.6)
implies that the global solution is also positive, and xðtÞ ¼ yðtÞ þ K > K. Thus Eq. (1.8) has a non-oscillatory about K solution.
The case 1(b) was proven in [4, Theorem 7], and it is similar to the previous case, once we assume the initial conditions
uðtÞ 2 ð0;KÞ; t 6 0.

Now consider the cases 1(c) and 2 together. Let x ¼ yþ K , then (1.8) can be rewritten as Eq. (4.2) with m ¼ 2 and the zero
equilibrium. Evidently (1.8) is oscillatory/non-oscillatory about K if and only if (4.2) is oscillatory/non-oscillatory about zero.
Denote
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a1ðtÞ ¼ crðtÞ; f 1ðxÞ ¼ x; a2ðtÞ ¼ �acrðtÞ; f 2ðxÞ ¼
ð1þ KnÞ2

ðn� 1ÞKn � 1
K

1þ Kn �
xþ K

1þ ðxþ KÞn
� �

:

The function f2 has the unique minimum at the point x0 ¼ 1=ðn� 1Þ
1
n � K. The condition b

c >
n

n�1 implies x0 < 0. By Theorem 2.7
it is sufficient to consider the function f2 on the interval ½l� K � e;M � K þ e� for some e < l� K � x0, which is a subinterval
of ½x0;M � K þ e�, where the function f2 is monotone increasing. We also have
uf2ðuÞ > 0; u – 0; lim
u!0

f2ðuÞ
u
¼ 1; f 2ðuÞ < u; u > 0:
Thus, Eq. (4.2) has form (4.2) with m ¼ 2, and functions f1 and f2 satisfy the conditions of Lemma 4.3; therefore Eq. (4.2) has a
non-oscillatory solution when the linear equation
dx
dt
þ arðtÞxðtÞ � acrðtÞxðhðtÞÞ ¼ 0 ð4:7Þ
has a non-oscillatory solution. Next, all solutions of Eq. (4.2) are oscillatory if for some e > 0 all solutions of the equation
dx
dt
þ ðcrðtÞ � eÞxðtÞ � ðacrðtÞ þ eÞxðhðtÞÞ ¼ 0 ð4:8Þ
are oscillatory. After substituting xðtÞ ¼ e�
R t

0
crðsÞdsvðtÞ into (4.7) and xðtÞ ¼ e�

R t

0
ðarðsÞ�eÞdsvðtÞ into (4.8), these equations can be

written as
dv
dt
� acrðtÞe

R t

hðtÞ
crðsÞdsvðhðtÞÞ ¼ 0; ð4:9Þ

dv
dt
� ðacrðtÞ þ eÞe

R t

hðtÞ
ðcrðsÞ�eÞdsvðhðtÞÞ ¼ 0; ð4:10Þ
where (4.9) and (4.10) have the same oscillation properties as (4.7) and (4.8), respectively. Condition (4.3) and Lemma 4.2
imply that Eq. (4.9) has a non-oscillatory solution, whereas condition (4.4) and Lemma 4.2 yield that for small e > 0 all solu-
tions of (4.10) are oscillatory, and the statement of the theorem follows from Lemma 4.3. h
Definition 4.5. An oscillatory about K solution of an equation is called slowly oscillating if for any t0 > 0 there exist two
points t1 and t2; t2 > t1 > t0, such that hðtÞ > t1; t P t2, and xðtÞ � K preserves its sign in ½t1; t2Þ and vanishes at the point t2:
ðxðsÞ � KÞðxðtÞ � KÞ > 0; s; t 2 ½t1; t2Þ; xðt2Þ ¼ K:
Otherwise, the solution is rapidly oscillating.
Remark 4.6. If either 1(a) or 1(b) of Theorem 4.4 is satisfied, then Eq. (1.5) is non-oscillatory about K. The latter can be jus-
tified in a fashion similar to [15]; moreover, Eq. (1.5) has no slowly oscillating about K solutions. Rapidly oscillating solutions
for a different autonomous model were recently discussed in [24].
5. Mackey–Glass model with delayed control

It is well known that model (1.1) exhibits stable and unstable limit cycles, where stable cycles may have an arbitrary
number of peaks per period, and chaos, which comes along with the presence of infinitely many periodic solutions of differ-
ent periods, and of infinitely many irregular and mixing solutions, infinitely many periodic and uncountably many aperiodic
solutions. The erratic structure of most of aperiodic solutions and their mixing trajectories come to what Li and Yorke [32]
called ‘‘chaotic’’ motion. Although there is no universally accepted mathematical definition of chaos, a commonly used def-
inition says that, for a dynamical system to be classified as chaotic, at least, it must be sensitive to initial conditions, i.e., a
prescribed difference between solutions at some advanced stage can be achieved for any arbitrarily small difference between
the initial conditions. Note that chaos has not yet been proven for classical models, including Mackey–Glass model (1.1). That
is why it is very important to find a control mechanism that will turn a chaotic motion to some kind of the controlled regime.
The control of dynamical systems is a classical subject in engineering science [14,28,30,44,50], and the electronic analog of
Mackey–Glass model (1.1) was introduced in [42]. The simplest model of an electro-optical device can be expressed as
dx
dt
þ cðtÞxðtÞ ¼ f ðt; xðt � sÞÞ;
where xðtÞ is the output signal, f is a nonlinear system’s response, cðtÞ > 0 and s > 0 are system’s parameters; and a per-
turbed model with a feedback controller F can be expressed as
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Fig. 1. A solution of equation (4.11) without control is unstable and oscillatory, and the small control c ¼ 0:2 reduces the size of oscillations but does not
lead to stabilization (left). When c ¼ 0:3, a solution of (4.11) demonstrates oscillatory convergence to the equilibrium K � 1:732, while for c ¼ 1:2 this
convergence is monotone (right).
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dx
dt
¼ �cðtÞxðtÞ þ f ðt; xðt � sÞÞ þ FðxÞ: ð5:1Þ
The purpose of a feedback control is to assure that the system asymptotically converges to its attractor. Two basic adaptive
control models are widely used: controllers that are built on SFC (Standard Feedback Control) where the controlling force is
proportional to the deviation of the system from the attractor
FðxÞ ¼ g½exðtÞ � xðtÞ�;
here exðtÞ is a desired fixed point of the model, and DFC (Delayed Feedback Control)
FðxÞ ¼ g½xðt � rðtÞÞ � xðtÞ�;
where rðtÞ is the variable feedback time delay, or (see [30]) in the form FðxÞ ¼ gðtÞ½xðt � rðtÞÞ � xðtÞ�.
Consider Eq. (1.5) with a distributed delay and SFC
dx
dt
¼ �rðtÞ cxðtÞ � b

Z t

hðtÞ

xðsÞ
1þ xnðsÞdsRðt; sÞ

 !
þ gðtÞ½K � xðtÞ�: ð5:2Þ
Further, assuming that (1.5) is unstable, we justify the possibility of global stabilization with SFC.

Theorem 5.1. Let
R1

0 rðsÞds ¼ 1 and the positive equilibrium K of (1.5) be unstable. Then there exists gðtÞP 0 such that the
positive equilibrium K of (5.2) is GAS.
Proof. Let us consider gðtÞ ¼ mrðtÞ. Then, after substituting y ¼ x� K , Eq. (5.2) takes the form
dy
dt
¼ �rðtÞ ðcþ mÞyðtÞ � b

Z t

hðtÞ

yðsÞ þ K
1þ ðxðsÞ þ KÞn

dsRðt; sÞ � b
K

1þ Kn

" #
: ð5:3Þ
Global asymptotic stability of (5.3) is equivalent to the global asymptotic stability of the positive equilibrium K of Eq. (1.5),
with cþ m instead of c as a coefficient of xðtÞ.

Thus, by Theorem 3.13, K is a global attractor of all positive solutions of (5.2) if
1 <
b

cþ m
<

n
n� 2

;

or bðn� 2Þ=n� c < m < b� c, as far as b=c > n=ðn� 2Þ (otherwise, the Eq. (1.5) is stable). Thus, stabilization with SFC is pos-
sible for any unstable (1.5). h

Next, consider a model with a distributed delay and DFC, where control also includes the same distributed delay
dx
dt
¼ �rðtÞ cxðtÞ � b

Z t

hðtÞ

xðsÞ
1þ xnðsÞdsRðt; sÞ

" #
þ gðtÞ

Z t

hðtÞ
xðsÞdsRðt; sÞ � xðtÞ

" #
: ð5:4Þ
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As previously, assume that gðtÞ ¼ mrðtÞ and rewrite (5.4) in the form
dx
dt
¼ �rðtÞ ðcþ mÞxðtÞ �

Z t

hðtÞ
mxðsÞ þ b

xðsÞ
1þ xnðsÞ

� �
dsRðt; sÞ

" #
: ð5:5Þ
Theorem 5.2. Let
R1

0 rðsÞds ¼ 1 and the positive equilibrium K of (1.5) be unstable. Then there exists gðtÞP 0 such that the
positive equilibrium K of (5.4) is GAS.
Proof. Let us consider gðtÞ ¼ mrðtÞ. By Lemma 3.11, Eq. (5.5) is globally asymptotically stable if the positive equilibrium K of
the difference equation
xnþ1 ¼ f ðxnÞ; where f ðxÞ ¼ 1
cþ m

mxþ bx
1þ xn

� �
ð5:6Þ
is globally asymptotically stable; in particular, this is valid if f ðxÞ is monotone increasing, at least on ½0;K�. The minimum of
the derivative of f ðxÞ on ½0;1Þ is m

cþm�
b

cþm
ðn�1Þ2

4n ; so if we choose
m > b
ðn� 1Þ2

4n
; ð5:7Þ
then the positive equilibrium K of (5.5) is GAS.
Corollary 5.3. Let the positive equilibrium K of Eq. (1.2) be unstable. If (5.7) holds then K is GAS equilibrium of the equation
dx
dt
¼ bxðt � sÞ

1þ xnðt � sÞ � cxðtÞ þ m xðt � sÞ � xðtÞ½ �: ð5:8Þ
Example 5.4. Consider the equation with a constant delay and control
dx
dt
¼ �xðtÞ þ 10xðt � 1Þ

1þ x4ðt � 1Þ þ c xðt � 1Þ � xðtÞ½ �: ð5:9Þ
Eq. (5.7) gives stabilization for c > 5:625 (for any delay); however, for the delay s ¼ 1 we have stabilization for much smaller
values of c P 0:3, see Fig. 1; condition (5.7) is much more restrictive than stabilization requires in this particular case but it
gives a uniform condition for all types and values of delays.
Remark 5.5. Sufficient condition (5.7) also guarantees that (5.5) is non-oscillatory; moreover, it has no slowly oscillating
solutions.
6. Some Mackey–Glass-type models

In this section we will review some results obtained for Mackey–Glass-type models. One of the modifications of the clas-
sical Mackey–Glass model
dx
dt
¼ �cxðtÞ þ bxðtÞ

1þ xnðt � sÞ ð6:1Þ
with c ¼ 1, was introduced in [43] (see also [6,31,48]). This equation has both a trivial and a nontrivial equilibrium, provided
b > c ¼ 1. Linearization procedure yields the local asymptotical stability condition for the trivial solution of Eq. (6.1) which is
nðb�1Þ

b s < p
2. Also, based on [31], Eq. (6.1) with c ¼ 1 is oscillatory about K if
nðb� 1Þ
b

s > 1
e
:

In [41] the more general model than (1.1)
dx
dt
¼ �cxðtÞ þ bhnxmðt � sÞ

hn þ xnðt � sÞ ð6:2Þ



6280 L. Berezansky et al. / Applied Mathematics and Computation 219 (2013) 6268–6283
was introduced (see also [20,45,47]).

Theorem 6.1. [45] If n > m P 2 then the positive equilibrium is not attractive for all positive solutions. The trivial solution is not
only stable, but ‘‘even attracts a large subset of positive solutions, independently on s’’.

In [6, Theorem 2] the following model
dx
dt
¼ rðtÞ bxðtÞ

1þ xnðhðtÞÞ � cxðtÞ
� �

ð6:3Þ
was under examination.

Theorem 6.2. Suppose rðtÞP 0 satisfies (1.6), (a2) holds, b > c > 0 and
bc
4

lim sup
t!1

Z t

hðtÞ
rðsÞds < 1þ 1

e
:

Then K ¼ ðb=c� 1Þ1=n is a global attractor for all positive solutions of (6.3).
If rðtÞ and hðtÞ are continuous functions then 1þ 1=e can be replaced by the best possible constant 3/2. In [49] the non-

autonomous model with a state-dependent delay
dx
dt
¼ �cðtÞxðtÞ þ bðtÞxðtÞ

r þ xnðt � sðt; xðtÞÞÞ ; ð6:4Þ
where c; b 2 ðR;RþÞ; s 2 C½R2;Rþ� are x�periodic functions with respect to t; r is a positive constant, was under study.

Theorem 6.3. [49, Theorem 2.1] If
Z x

0
bðsÞds > r

Z x

0
cðsÞds;
then Eq. (6.4) has at least one positive periodic solution.
In [7] the model
dx
dt
¼ �cðtÞxðhðtÞÞ þ bðtÞ xðgðtÞÞ

1þ xnðgðtÞÞ ð6:5Þ
was examined, where bðtÞ > 0; cðtÞ > 0; t P 0; g and h satisfy conditions (a1) and (a2). The following result is due to [7, The-
orem 4, Corollary 4.1 and Theorem 5].

Theorem 6.4. If
lim inf
t!1

½cðtÞ � bðtÞ� > 0 and lim sup
t!1

cðtÞ
cðtÞ � bðtÞ

Z t

hðtÞ
½bðsÞ þ cðsÞ�ds < 1
then the zero solution of (6.5) is locally uniformly asymptotically stable.
In [13] the non-autonomous model
dx
dt
¼ �cðtÞxðtÞ þ bðtÞxðtÞ

1þ xnðtÞ � aðtÞxðhðtÞÞ ð6:6Þ
was under study. It was proven that all positive solutions are bounded; conditions for extinction and permanence of solu-
tions were also obtained [13].

In [25], as an application, the following modification of (1.1)
dx
dt
¼ �cxðtÞ � b

xðtÞ
1þ xnðtÞ þ kb

xðt � sÞ
1þ xnðt � sÞ ð6:7Þ
was examined. By [25, Proposition 3.1 and 3.3] the nontrivial equilibrium exists if and only if k > 1þ c=b. If k 6 1þ c=b then
the trivial equilibrium of Eq. (6.7) is GAS. In addition, conditions for the existence of slowly oscillating solutions of Eq. (6.7)
were obtained.

In [53, Theorem 3.4] the model with a distributed delay
dx
dt
¼ �cðtÞxðtÞ � b1ðtÞxðtÞ

1þ xnðtÞ þ bðtÞ
Z 1

0
PðrÞ xðt � rÞ

1þ xnðt � rÞ dr ð6:8Þ
was considered.
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Theorem 6.5. [53, Theorem 3.4] Let n > 0; cðtÞ; b1ðtÞ and bðtÞ be continuous positive x-periodic functions on Rþ; PðtÞ be
piecewise continuous nonincreasing eventually, where

R1
0 PðsÞds ¼ 1 and

R1
0 sPðsÞds <1. If

min06t6x½cðtÞ þ b1ðtÞ� > max06t6xbðtÞ, then every positive solution of (6.8) satisfies limt!1xðtÞ ¼ 0:
7. Discussion and open problems

We present known global stability conditions for Eq. (1.2) in Table 1.
Let us note that LAS and absolute GAS conditions (either 0 < n 6 2 or b=c 6 n=ðn� 2Þ) coincide for autonomous Eq. (1.2)

and for non-autonomous Eqs. (1.5) with a positive equilibrium. As noted in [35, Remark 3.3], Theorem 3.9 improves results
obtained for n > 2 in [20], and the condition cÞ in Theorem 3.9 is sharp in the class of equations (3.6) with sðtÞ 6 h. We pre-
sented here stability results for some generalizations of Eq. (1.2), in particular, for equation with a distributed delay (1.5),
and for general non-autonomous Mackey–Glass model (2.1). Using these stability results, we also examine stabilization of
Mackey–Glass model with delayed control. To the best of our knowledge, the only result on oscillation of the Mackey–Glass
model was introduced in [21]. However, the proof of the main theorem in [21] was based on Lemma 1.1 in [21], which claims
that under certain conditions oscillation of a nonlinear and a corresponding linear equation are equivalent. Lemma 1.1 in
[21] is not valid in certain cases, especially in the critical case when the parameter values are close to the oscillation bound-
ary (see, for example, [3]). In the present paper, for the proofs we used a linearized oscillation theorem in the form of [1],
which can be applied once (3.12) holds. Various stability results were obtained in the papers [33–37,45,46] for the general
delay equation
_xðtÞ ¼ f ðxðt � sðtÞÞÞ � axðtÞ
with further applications to the models of the Mackey–Glass type. Let us note that in the present paper we also consider
stability of the equation with several concentrated delays, see Theorem 3.15.

Finally, we outline some open problems and topics for further research.

1. Prove or disprove that the positive equilibrium K of (1.2) is LAS if and only if it is GAS.
Is this proposition true for a non-autonomous generalizations of (1.2), including (1.5)?

2. Consider the equation with an infinite distributed delay
dx
dt
¼ �rðtÞ cxðtÞ � b

Z t

�1

xðsÞ
1þ xnðsÞdsRðt; sÞ

� �
; ð7:1Þ
where rðtÞP 0 is an essentially bounded on ½0;1� function satisfying
R1

0 rðsÞds ¼ 1, Rðt; �Þ is a left continuous nondecreasing
function for any t, Rðt; tþÞ ¼ 1. Describe conditions on Rðt; sÞwhich imply permanence of positive solutions of (7.1) and define
a priori bounds on the eventual solutions.
3. Obtain oscillation and non-oscillation conditions for model (7.1).
4. Study permanence, oscillation and stability properties of the modifications of Mackey–Glass model (1.3):
dx
dt
¼ rðtÞ �cxðtÞ þ b

xðhðtÞÞ
1þ xnðgðtÞÞ

� �
;

dx
dt
¼ rðtÞ �cxðt � rÞ þ b

xðt � sÞ
1þ xnðt � sÞ

� �
;

dx
dt
¼ rðtÞ �cxðtÞ þ b

xmðhðtÞÞ
1þ xnðhðtÞÞ

� �
;

dx
dt
¼ rðtÞ �cxðtÞ þ

Xm

k¼1

bk
xðhkðtÞÞ

1þ xnk ðhkðtÞÞ

" #
;

dx
dt
¼ rðtÞ �cf ðxðtÞÞ þ b

xðhðtÞÞ
1þ xnðhðtÞÞ

� �
:

Consider these equations also in the case when c and b are x-periodic functions.
5. Let K be an equilibrium point of Eq. (1.8). Consider the SFC model
dx
dt
¼ �rðtÞ cxðtÞ � b

xðhðtÞÞ
1þ xnðhðtÞÞ

� �
þ gðtÞ½M � xðtÞ�: ð7:2Þ
Let K1 > 0 be some fixed constant. For which K1 it is possible to find a constant M > 0 and a function gðtÞ such that all po-
sitive solutions of Eq. (7.2) converge to K1, where K1 might not coincide with K?
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6. Study stability of Mackey–Glass model (5.4) with DFC when s – r, e.g., when the control delay r is significantly less than
the system’s delay s.
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