Math 200- Sample Test 3
November 2011
Math 200 Sample Test 3 - Nov 2011

Question 1 : Evaluate $I=\iint_{R}(x-y) d A$, where R is the region bounded by $y^{2}=3 x$ and $y^{2}=4-x$.

Question 2: Find the points on the cone $x^{2}=y^{2}+z^{2}$ nearest to the point $(0,1,3)$.

Math 200- Sample Test 3
November 2011
Question 3: Find the area bounded by the graph $r^{2}=\sin (\theta)$.

Question 4 : Use a triple integral to find the volume inside the cylinder $r=4$, above $z=0$ and below $2 z=y$.

Math 200- Sample Test 3
November 2011
Question 5 : Find the centroid of the upper half of the solid ball of radius a with center at the origin.

Question 6 : Evaluate

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \frac{x-y}{x^{2}+y^{2}} d y d x
$$

Math 200 Test 1 - Sep 282011

\square
name (printed)
\square
student number

Instructions: Justify every answer, and clearly show your work. Unsupported answers will receive no credit.

You will be given 80 minutes to write this test. Read over the test before you begin.

At the end of the test you will be given the instruction "Put away all writing implements and remain seated." Continuing to write after this instruction will be considered as cheating.

Academic dishonesty: Exposing your paper to another student, copying material from another student, or representing your work as that of another student constitutes academic dishonesty. Cases of academic dishonesty may lead to a zero grade in the test, a zero grade in the course, and other measures, such as suspension from this university.

Question	value
1	6
2	7
3	10
4	7
5	9
6	6
Total	$\mathbf{4 5}$

Math 200 - Test 1
Sep 282011

Question 1:

[6 points] Find an equation of the plane through $P(2,-3,2)$, and the line L determined by the planes $6 x+4 y+3 z+5=0$ and $2 x+y+z-2=0$.

Math 200 - Test 1
Sep 282011

Question 2

[7 points] If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$, show that $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$.

Math 200 - Test 1
Sep 282011
Question 3 Identify and sketch the surfaces
[5 points]

$$
x^{2}-y^{2}-1=0
$$

(b) [5 points]

$$
x^{2}-y^{2}-z^{2}=4 .
$$

Math 200 - Test 1
Sep 282011

Question 4

[7 points] Use vectors $\vec{a}=\langle 2,-2,1\rangle \vec{b}=\langle 0,-1,1\rangle$ and $\vec{c}=\langle 1,-1,0\rangle$, to prove (disprove)

$$
(\vec{a} \times \vec{b}) \times \vec{c} \neq(\vec{b} \times \vec{c}) \times \vec{a}
$$

Math 200 - Test 1
Sep 282011

Question 5:

(a)[5 points] Show that the triangle with vertices $P(4,3,6), Q(-2,0,8) R(1,5,0)$ is a right triangle.
(b)[4 points] Find parametric equation of the line that contains point P and parallel to the line $R Q$.

Math 200 - Test 1
Sep 282011
Question 6
[7 points] Find all vectors \vec{a} in the plane such that $|\vec{a}|=1$ and $|\vec{a}+\vec{i}|=1$, where $\vec{i}=<1,0,0>$.

Math 200 Test 2 - October 262011

\square
name (printed)

student number

I have read and understood the instructions below:

\square
Instructions: Justify every answer, and clearly show your work. Unsupported answers will receive no credit.

You will be given 80 minutes to write this test. Read over the test before you begin.

At the end of the test you will be given the instruction "Put away all writing implements and remain seated." Continuing to write after this instruction will be considered as cheating.

Academic dishonesty: Exposing your paper to another student, copying material from another student, or representing your work as that of another student constitutes academic dishonesty. Cases of academic dishonesty may lead to a zero grade in the test, a zero grade in the course, and other measures, such as suspension from this university.

Question	value
1	6
2	6
3	9
4	9
5	8
6	6
7	8
Total	$\mathbf{5 2}$

Math 200 - Test 2
October 262011

Question 1:

[$\mathbf{6}$ points] Show that the surfaces $x^{2}+y^{2}+z^{2}=18$ and $x y=9$ are tangent at $(3,3,0)$.

Math 200 - Test 2
October 262011

Question 2

[6 points] Sketch the domain of $f(x, y)=\sqrt{\frac{x^{2}}{9}-y^{2}-1}$.

Math 200 - Test 2
October 262011

Question 3

[9 points] Verify that $f(x, y)=\frac{x y}{x-y}$ satisfies the equation $x^{2} f_{x x}+y^{2} f_{y y}+2 x y f_{x y}=0$.

Math 200 - Test 2
October 262011

Question 4

[9 points] If a point is moving on the curve of intersection of $x^{2}+3 x y+3 y^{2}=z^{2}$ and the plane $x-2 y+4=0$, how fast is it moving when $x=2$, if x is increasing at the rate of 3 units per second?

Math 200 - Test 2
October 262011

Question 5:

[8 points] Find all relative extreme of $f(x, y)=(x-y)(1-x y)$.

Math 200 - Test 2
October 262011

Question 6:

[6 points] Is there a function $f(x, y)$ such that $f_{x}=e^{x} \cos y$ and $f_{y}=e^{x} \sin y$? Explain.

Math 200 - Test 2
October 262011

Question 7:

[8 points] For $f(u, v)=\ln (u+v)$ where $u=\sin x-\cos y$ and $v=x \sin y$ compute $f_{x y}$.

Math 200 Test 3 November 232011

\square
name (printed) \square
student number

I have read and understood the instructions below:

\square
Instructions: Justify every answer, and clearly show your work. Unsupported answers will receive no credit.

You will be given 80 minutes to write this test. Read over the test before you begin.

At the end of the test you will be given the instruction "Put away all writing implements and remain seated." Continuing to write after this instruction will be considered as cheating.

Academic dishonesty: Exposing your paper to another student, copying material from another student, or representing your work as that of another student constitutes academic dishonesty. Cases of academic dishonesty may lead to a zero grade in the test, a zero grade in the course, and other measures, such as suspension from this university.

Question	value
1	10
2	10
3	10
4	10
5	10
Total	$\mathbf{5 0}$

Math 200 - Test 3
November 232011

Question 1:

[10 points] Find the volume of the wedge cut from the elliptical cylinder $9 x^{2}+4 y^{2}=36$ by the planes $z=0$ and $z=y+3$.

Math 200 - Test 3
November 232011

Question 2

[10 points] Use spherical coordinates to calculate the volume of the solid bounded by the sphere $\rho=4$ and below by the cone $\phi=\pi / 3$.

Math 200-Test 3
November 232011

Question 3

[10 points] Use Lagrange multiplier method to find the point(s) on the solid $x^{2}+y^{2}+z^{2}=1$, furthest from the point $P(2,1,2)$.

Math 200 - Test 3
November 232011

Question 4

[10 points] Evaluate the integral

$$
\int_{0}^{1.5} \int_{x \sqrt{3}}^{\sqrt{9-x^{2}}} 2 x y d y d x
$$

using polar coordinates.

Math 200 - Test 3
November 232011

Question 5:

[10 points] Evaluate

$$
\int_{0}^{1} \int_{0}^{y} \frac{x}{y^{2}} \sin \frac{x}{y} d x d y
$$

Math 200- Sample Test 2
October 2011
Math 200 Sample Test 2 - Oct 2011

Question 1 : For the relationship $x^{-1}+y^{-1}+z^{-1}=3$ compute $\frac{\partial^{2} z}{\partial x^{2}}$.

Question 2: Let $z=x y+f\left(x^{2}+y^{2}\right)$. Prove(or disprove) that $y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=y^{2}-x^{2}$.

Math 200- Sample Test 2
October 2011
Question 3: Sketch the domain of $f(x, y)=\sqrt{x^{2}-y-1}$.

Question 4: Let $f(x, y, z)=y e^{x+z}+z e^{y-x}$. At the point $P(2,2,-2)$, find the unit vector pointing in the direction of most rapid increase of f.

Math 200- Sample Test 2
October 2011
Question 5 : Let $f(x, y)=y^{2} e^{x y}+\frac{x}{y}$. Find $f_{x x}, f_{y y}$ and $f_{x y}$.

Question 6 : Find all relative extreme of $f(x, y)=x y(2 x+4 y+1)$.

Question 7 : Let $f_{x}=g_{y}$ and $g_{x}=-f_{y}$. Prove that $f(x, y)$ satisfies the Laplace equation, that is $f_{x x}+f_{y y}=0$.

Question 8: Find the shortest distance between two lines

$$
L_{1}: x=2+4 t, y=-1-7 t, z=-1+t \text { and } L_{2}: x=2-2 s, y=1+s, z=2-3 s .
$$

Math 200 Sample Test 1 - Sep 2011

Question 1:

Given the line $x-1=y-2=z-3$ and the point $P(8,4,5)$. Find the equation of the plane which contains the line and the point.
(b) Find an equation of the set of all points equidistant from the points $A(7,-8,-9)$ and $B(-4,2,-10)$.

Math 200 - Sample Test 1
Sep 2011

Question 2

Let if $|\vec{u}|=9,|\vec{v}|=3$ and $\vec{u}, \vec{v}=45^{\circ}$. Compute $|(\vec{u}+\vec{v}) \times(\vec{u}-\vec{v})|$.

Question 3 Identify and sketch the surfaces
(a)

$$
z=x^{2}-2 x+y^{2}
$$

Math 200 - Sample Test 1
Sep 2011
(b)

$$
x-y^{2}+2=0 .
$$

Question 4
Use vectors $\vec{a}=\langle 2,-2,1\rangle \vec{b}=\langle 0,-1,1\rangle$ and $\vec{c}=\langle 1,-1,0\rangle$, to prove (disprove)

$$
(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{c} \cdot \vec{a}) \vec{b}
$$

Math 200 - Sample Test 1
Sep 2011

Question 5

Given the lines

$$
L_{1}: x=1+2 t, y=1-t, z=1+2 t \text { and } L_{2}: x=2+s, y=2+s, z=3+2 s
$$

Find an equation of the plane containing both lines.

Question 6:

Find the line of intersection of two planes $x-2 y+4 z=7$ and $x+y+5 z=1$.

Math 200 - Sample Test 1
Sep 2011

Question 7

Prove (disprove) that

$$
|\vec{a}+\vec{b}|^{2}-|\vec{b}-\vec{a}|^{2}=4 \vec{a} \cdot \vec{b}
$$

Question 7 Let $\vec{a}=\langle 2,2,2\rangle \vec{b}=\langle 5, \alpha, 5\rangle$. (i) Find α such that \vec{a} is orthogonal to \vec{b}. (ii) Find α such that $\vec{a} \times \vec{b}=\vec{b} \times \vec{a}$.

