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ABSTRACT 
Groundwater geochemical data from a sand- and mudstone aquifer system on eastern Vancouver Island are described.  
As in many similar geological situations around the world, some of the samples have significantly elevated fluoride 
levels.  We show that this can be largely attributed to the very high pH resulting from base-exchange softening, and that 
this process appears to be most effective in parts of the aquifer that have better-developed intergranular flow.  We also 
see a strong correlation between boron and fluoride, and we propose that boron is also being controlled by base-
exchange softening and pH.  Both fluoride and boron lead to significant health implications at high concentrations, and 
the geochemical relationships established in our study can be used to predict potential risks. 
 
RÉSUMÉ 
Des données sur la nappe phréatique géochimique du système aquifère consistant de la grès et d’argile sur la côte est 
de l’Île de Vancouver sont décrites. Tout comme plusieurs cas semblables, certains échantillons contiennent des 
niveaux de fluoride plutôt élevés.  Nous démontrons que ceci peut être attribué en grande partie au niveau très élevé de 
pH résultant de l’échange d’ion de calcium et de sodium.  De plus, ce processus semble être très efficace dans certaines 
parties d’aquifères démontrant un écoulement intergranulaire plus développé.  Nous remarquons aussi une importante 
corrélation entre le bore et le fluoride, et nous suggérons que le bore est aussi contrôlé par l’échange d’ion et de pH.  
Lorsque la teneur de fluoride et de bore est plus concentrée, ceci peut causer de sérieux problèmes de santé.  Les liens 
géochimiques établis lors de notre étude démontrent la possibilité d’un tel risque. 
 
 
1. INTRODUCTION 
 
Although most ground and surface waters have fluoride 
concentrations well below 0.5 mg/L, there are numerous 
situations, worldwide, where levels exceed the World 
Health Organization maximum acceptable concentration 
of 1.5 mg/L (WHO 2004).  In a few cases elevated fluoride 
levels can be attributed to groundwater contact with rocks 
that have particularly high fluorine contents (e.g., in the 
granitic terrain of northern Ghana, Apambire et al. 1997), 
but most fluoride-rich waters are found in sandy aquifers 
where the rocks have fluorine levels that are typical of 
background—a few hundred ppm at most.  Some 
examples include the Cretaceous and Tertiary clastic 
sedimentary rocks of Alberta (Hitchon et al. 2001), the 
Carboniferous fluvial sandstones of New Brunswick 
(Boyle 1992), the Cretaceous Potomac sands of Virginia 
(Cederstrom 1946), the Cretaceous Dakota sandstone 
aquifer in Kansas (Macfarlane et al. 1992), the Permian-
Triassic Karoo sandstone in Zimbabwe (Larsen et al. 
2001), the Cretaceous Emscher-Mergel marls in Germany 
(Queste et al. 2001), and the recent loess deposits in the 
Buenos Aires area of Argentina (Kruse and Ainchil 2003). 
 
We have studied the geochemistry of groundwater 
samples from 177 domestic water wells completed in 
clastic sedimentary aquifers on eastern Vancouver Island 
(Canada) and the adjacent Gulf Islands (Figure 1).  
Previous work in this region has shown that some 
Nanaimo Group wells have fluoride levels above 1.5 mg/L 
(Kohut and Hodge 1985).  Fluoride and boron levels in 
our samples range up to 10 mg/L and 3860 µg/L 

respectively. In this paper we describe the aquifers, 
present a model for the geochemical evolution of the 
groundwater, and discuss why some wells have high 
fluoride and boron levels, while others do not.  Our results 
have important implications for understanding elevated 
groundwater fluoride and boron levels in this and other 
regions of the world. 
 
1.1 Study area 
 
The eastern coast of Vancouver Island, including the 
adjacent Gulf Islands, is largely underlain by the terrestrial 
and marine mudstone, sandstone and conglomerate of 
the Upper Cretaceous Nanaimo Group (Figures 1 and 2).  
Most residents of the Gulf Islands and of some rural parts 
of eastern Vancouver Island depend on private wells, and 
much of that groundwater is derived from Nanaimo Group 
aquifers.   
 
The present study was confined to two rural areas near to 
the City of Nanaimo, including Gabriola Island and the 
Yellow Point region on Vancouver Island (Figure 3). The 
Late Cretaceous (ca. 94 to 65 Ma) Nanaimo Group is 
exposed along much of the eastern coast of Vancouver 
Island, on most of the adjacent Gulf Islands, and at a few 
locations on the British Columbia mainland (Figure 1).  
The group has an aggregate thickness of approximately 
5000 m, and is divided into 11 formations, as summarized 
on Figure 2 (Mustard 1994).  The upper six of those 
formations are exposed in the Yellow Point and Gabriola 
Island areas, and these strata are comprised of clastic 
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sediments of submarine-fan origin. Lithological 
information for these 6 formations is included in Table 1.   
 

 
Figure 1. Location and geology of the study area (after 
Mustard 1994). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Stratigraphy of the Nanaimo Group (after 
Mustard 1994).  
 
 
 

 
 
Figure 3 Geology of the study area and locations of well-
water samples (after Cathyl-Bickford and Hoffman 1998; 
England 1990).  
 
 
Table 1.  Lithologies of the upper six formations of the 
Nanaimo Group. 

Formation Lithology 

Gabriola 

Medium- to coarse-grained 
submarine fan feldspathic 
sandstone (average 15% matrix), 
with mudstone interbeds 

Spray 
Submarine fan mudstone and 
siltstone with turbidites, and with 
sandstone interbeds 

Geoffrey 

Medium- to coarse-grained 
submarine fan feldspathic 
sandstone (average 15% matrix) 
interbedded with conglomerate 

Northum-
berland 

Submarine fan mudstone and 
siltstone with sandstone 
interbeds 

De Courcy 

Medium- to coarse-grained 
submarine fan feldspathic 
sandstone (average 15% matrix), 
with mudstone interbeds 

Cedar 
District 

Submarine fan mudstone and 
siltstone with turbidites, and with 
sandstone interbeds 

 
 
Post-glacial eustatic sea-level rise resulted in complete 
inundation of the study area at the end of the last 
glaciation.  Maximum sea level was approximately 200 m 
above the current level at around 12,000 y B.P. (James et 
al. 2000).  The maximum elevation in the study area is 
160 m on Gabriola Island.  Isostatic rebound led to the 
current shore line being established by around 6000 y 
B.P. 
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2. METHODS 
 
Water samples were collected from domestic wells at an 
average density of 1 sample per km2 (Figure 3).  In all 
cases the water was allowed to flow for approximately 10 
minutes before sampling to ensure that pipes were 
flushed.  Water treatment devices of any kind were 
avoided.  Samples were filtered on site using 1.2 µm 
glass-fibre filters.  One sub-sample was treated with 0.5 
mL preservative-grade HNO3 acid, while the other was 
untreated.  Samples were refrigerated at 4ºC from the 
time of collection until completion of all analysis. 
 
Water temperature, pH and conductivity were determined 
on site at the time of sample collection.  Temperature and 
pH were determined using a Fisher Accumet AP62 pH 
meter.  Conductivity was measured using a Fisher AP65 
conductivity meter. 
 
Laboratory chemical analyses were carried out according 
to accepted methods as outlined in Standard Methods 
(1998). Fluoride was determined by ion-selective 
electrode using a combination electrode (Fisher 13-620-
528) or a half cell electrode (Fisher 13-620-523) against 
silver/silver chloride reference, after adding total ionic 
strength adjustment buffer (SM 4500-F). 
 
Sulphate was measured using the BaCl2 turbidimetric 
method.  Bicarbonate was determined from the original 
sample pH and the total alkalinity determined 
volumetrically to a pH = 4.50 +/- 0.05 endpoint (Fisher 
AR25 pH meter), according to (SM 2320).  Chloride ion 
was measured by the argentometric titration method (SM 
4500-Cl).  Calcium, magnesium, potassium and sodium 
were determined by flame atomic absorption 
spectrophotometry (SM 3111) using a Perkin Elmer 703 
AAS.  Boron was determined by ICP-MS on acid 
preserved samples.   
 
Charge balances were calculated using equation 1: 
 
 
CB = ((ΣzMc- ΣzMa) / (ΣzMc+ ΣzMa)) * 100   [1] 
 
 
Where z is the ion charge and M the molarity, and the 
subscripts c and a refer to cations and anions, 
respectively. 
 
Most of the 177 samples have CB values of less than 5%, 
but a significant number (56) have CB values between 5 
and 10%, and some (32) have CB values of greater than 
10%.  All samples with CB values of greater than 10% 
have been excluded from further consideration. 
 
Field blanks and replicate samples were collected 
periodically and subjected to full chemical analysis. In all 
cases, field blanks returned analytical results at or below 
our method detection limits. Results of sample replicates 
generally agree within 5%. 
 

Rock samples were collected from 52 sites distributed 
throughout the study area.  Samples were acquired using 
a 2 cm-diameter diamond core drill to access 
unweathered material approx-imately 8 cm from the rock 
surface.  The samples were crushed and ground.  For 
boron analysis a sub-sample was fused with sodium-
peroxide and dissolved in nitric and hydrochloric acids 
and then analyzed by ICP-MS.  For fluorine analysis sub-
samples were fused with sodium-hydroxide at 580ºC, and 
then taken up in a weak solution of sulphuric acid and 
ammonium citrate prior to analysis by ion-specific 
electrode. 
 
 
3. RESULTS 
 
3.1 Major element water geochemistry  
 
As shown on Figure 4a, the majority of the groundwaters 
that we sampled are dominated by bicarbonate, although 
a few have chloride as the major anion. Sulphate levels 
are very low in most of the samples from sandstone 
aquifers, but are elevated in some samples.  Sodium and 
calcium are the major cations (Figure 4b).  Some of the 
samples are strongly dominated by sodium.   
 
Most samples have calcium levels ranging up to 60 mg/L 
and sodium levels ranging up to 250 mg/L, and there is a 
weak negative correlation between these variables 
(Figure 5).   
 
There is a positive correlation between pH and sodium 
(Figure 6).  Most of the samples with sodium levels above 
100 mg/L have pH greater than 7.5, while almost all 
samples with sodium levels below 50 have pH less than 
7.5.  There is a negative correlation between pH and 
calcium (Figure 7).  Most of the samples with pH above 
7.5 have calcium levels below 20 mg/L. 
 
The major-element characteristics of the Yellow Point and 
Gabriola groundwaters, as described above, are generally 
very similar to those of the groundwaters studied by Allen 
and Suchy (2001) on Saturna Island (situated to the 
southeast of this region) and by Allen and Matsuo (2002) 
on Hornby Island (situated to the northwest of this region) 
(see Figure 1 for locations). 
 
3.2 Trace element water geochemistry  
 
There is a strong correlation between pH and fluoride 
(Figure 8). A positive pH-fluoride relationship has been 
observed in many other areas with elevated groundwater 
fluoride levels, especially areas with sandy aquifers.  See 
for example: Boyle (1992), Macfarlane et al. (1992), 
Queste et al. (2001),  Saxena and Ahmed (2001).   Most 
of the fluoride-rich samples are from sandstone aquifers; 
of the 19 samples with more than 1.5 mg/L fluoride, 17 
are from sandstone aquifers. 
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Figure 4.  Anion and cation molar concentration ternary 
diagrams for Yellow Point and Gabriola groundwater 
samples.  
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Figure 5. Calcium versus sodium in Yellow Point and 
Gabriola groundwater samples. 
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Figure 6.  pH versus sodium in Yellow Point and Gabriola 
groundwater samples. 
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Figure 7.  pH versus calcium in Yellow Point and Gabriola 
groundwater samples. 
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Figure 8.  pH versus fluoride in Yellow Point and Gabriola 
groundwater samples. 
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There is a strong correlation between fluoride and boron 
(Figure 9). Queste et al. (2001) also observed a positive 
boron-fluoride relationship in the Muenster area in 
Germany.  As with fluoride, most of the boron-rich 
samples are from sandstone aquifers; of the 25 samples 
with more than 500 µg/L boron, 20 are from sandstone 
aquifers.  Boron is also positively correlated with pH 
(Figure 10) and with sodium (Figure 11).   
 
Fluoride and boron enrichment appear to be largely 
restricted to two regions, one in the northeastern part of 
the Yellow Point area, and the other in the northern part of 
Gabriola Island (Figures 12 and 13).  Apart from the fact 
that both of these areas are underlain by sandstone (De 
Courcy and Gabriola Formations respectively) we do not 
have any specific geological explanation for the apparent 
localization of the fluoride and boron enrichment. 

10

100

1000

10000

0.01 0.10 1.00 10.00
Fluoride (mg/L)

B
o

r
o

n
 (

u
g

/L
)

mudstone
sandstone

 
Figure 9.  Boron versus fluoride in Yellow Point and 
Gabriola groundwater samples. 
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Figure 10. pH versus boron in Yellow Point and Gabriola 
groundwater samples. 
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Figure 11. Boron versus sodium in Yellow Point and 
Gabriola groundwater samples. 
 
 

 
 
Figure 12. Distribution of fluoride in Yellow Point and 
Gabriola Island well samples.  
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Figure 13. Distribution of boron in Yellow Point and 
Gabriola Island well samples.  
 
 
3.3 Rock geochemistry  
 

Fluorine levels in the rock samples range from 230 to 
1340 ppm. The average fluorine level in mudstone 
samples is 523 ppm, while the average in sandstone 
samples is 380 ppm.  Boron levels range from 6.2 to 85.4 
ppm, with an average of 44.8 ppm in the mudstones and 
12.5 ppm in the sandstones (see Table 2). The 
relationship between fluorine and boron in the rock 
samples is shown in Figure 14. 
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Figure 14. Fluorine versus boron in Yellow Point and 
Gabriola rock samples. 

 
 
Global data for sandstones and mudstones, as reported 
by Rose et al. (1979), are consistent with our observation 
that mudstones tend to have higher levels of both fluorine 
and boron than do sandstones (Table 2).  They also 
report considerably higher levels of fluorine, but lower 
levels of boron, in granites, compared with sandstones 
and mudstones. 
 
Table 2.  Average fluorine and boron levels in rock 
samples from the Yellow Point and Gabriola areas. 
 

Rock type F (ppm) B (ppm) 
Sandstone (this study) 380 12.5 

Sandstone (global)* 280 35 
   

Mudstone (this study) 523 44.8 
Mudstone (global)* 680 100 

   

Granite (global)* 810 10 
* global data are from Rose et al. (1979) 
 
 
4. DISCUSSION 
 

The data presented here are consistent with the 
proposition of Allen and Suchy (2001) and Allen and 
Matsuo (2002) that base-exchange softening is important 
in controlling groundwater chemical evolution in the 
Nanaimo Group aquifers.  As is typical with base-
exchange softening, we observe that pH levels increase 
with increasing sodium levels and decreasing calcium 
levels.   
 
There is clear evidence of base-exchange softening in the 
data from a series of nested monitoring wells completed 
in Nanaimo Group rocks around a landfill northwest of the 
Yellow Point area1.  As summarized in Table 3, the water 
samples collected from the lower levels in these nested 
wells (average depth 18 m) have con-sistently higher pH, 
generally lower calcium levels and generally higher 
sodium levels than the samples collected at the upper 
levels (average depth 11 m).  Of the 11 nested wells, pH 
is higher at depth in all 11, calcium is lower at depth in 8 
out of 11, and sodium is higher at depth in 9 out of 11. 
 
Since groundwater fluoride levels are consistently higher 
in the sandstone aquifers than in the mudstone aquifers, 
even though the sandstone has generally lower fluorine 
contents than the mudstone, we conclude that 
groundwater fluoride levels in the Nanaimo Group 
aquifers are not directly related to the bulk fluorine 
contents of the aquifer rocks.  In fact, like most other 
clastic aquifers, neither the sandstone nor the mudstone 
has particularly high fluorine contents compared with most 
granitic rocks. 
 
 

                                                 
1 The landfill location is given in Figure 3.  None of the wells 
included on Table 3 shows any indication of landfill 
contamination. 
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Table 3.  pH, calcium and sodium data for nested wells 
(data provided by the Regional District of Nanaimo). 
 

Variable mean ratio 
 Upper* Lower* upper/lower 

pH 7.5 8.0 0.95 
Ca 24.0 15.3 1.6 
Na 82.3 103.5 0.80 

 

number of wells 
Variable 

upper>lower lower>upper 
pH 0 11 
Ca 3 8 
Na 9 2 

 

* “Upper” refers to the upper well in each nested pair (avg. depth 11 m).  
“Lower” refers to the lower well in each nested pair (avg. depth 18 m). 

 

 
As was suggested by Boyle (1992) for the sandstone 
aquifers of New Brunswick, it is our interpretation that, 
fluoride levels are elevated because of base-exchange 
softening. Base-exchange softening results in reduced 
calcium levels and elevated sodium, carbonate and pH.  
The competition of hydroxyl ions at high pH results in the 
release of fluoride from exchange sites (via ligand 
exchange) into solution (cf. Stumm and Morgan 1996).  
This hypothesis is supported by the strong correlation 
between pH and fluoride.  Furthermore, because fluoride 
levels are limited by the low solubility of CaF2, fluoride 
solubility is enhanced at the low calcium concentrations 
produced by base-exchange softening. 
 
Boron is present as boric acid and borate ion in aqueous 
solution. The strong correlation observed between fluoride 
and boron suggests that a ligand exchange mechanism 
may also control boron levels. Alternatively, Ravenscroft 
and McArthur (2004) propose that equilibration of an 
aquifer with sea water (which has 4200 µg/L boron), will 
result in exchange sites being loaded with borate ion.  
The removal of that boron, by flushing with fresh water, 
coincident with the process of base-exchange softening, 
accounts for the observed relationships of boron with 
sodium, pH and fluoride.  This is consistent with the 
evidence that the Nanaimo Group aquifer was in 
equilibrium with sea water between 12,000 and 6000 y 
B.P. 
 

Base-exchange softening and the consequent enhanced 
fluoride and boron desorption can take place in aquifers 
where there are sufficient exchange surfaces (e.g., clay 
minerals) to permit base-exchange, and sufficient water-
rock interaction to allow that process to significantly 
change the calcium and sodium contents and, 
consequently, the pH.  This should include any clay-
bearing sandy aquifer, providing that there is enough 
intergranular flow for significant water-rock interaction.   
 
We propose that enrichment of fluoride and boron are 
favoured in waters from the sandstone units of the 
Nanaimo Group—which have better- developed 
intergranular flow than the mud-stones—because 
intergranular flow facilitates both base-exchange 

softening and freshwater flushing.  These processes do 
not take place to the same extent in the mudstone 
aquifers because most of the water flows quickly along 
fractures; there is almost no intergranular flow, and there 
is little opportunity for exchange processes on clay 
minerals. 
 
Fluoride levels in excess of the WHO limit of 1.5 mg/L 
represent a serious risk to the dental and skeletal health 
of millions of people around the world (WHO 2004).   
Because much more groundwater is extracted from 
fluorine-poor sedimentary rocks than fluorine-rich granitic 
rocks, it is likely that more instances of elevated fluoride 
levels are related to base-exchange softening, than to 
high fluorine levels in rocks.  
 
Boron levels above the WHO provisional limit of 500 µg/L 
constitute a risk to the male repro-ductive system (WHO 
2004).  Boron levels above 1000 µg/L can also be toxic to 
crops (Ayers and Westcot 1989).  Relatively little is known 
about the boron chemistry of groundwater, but it appears 
that base-exchange softening and freshwater flushing 
may be important factors in its enrichment. 
 
 

5. CONCLUSIONS 
 
Elevated levels of fluoride in groundwaters from a 
sandstone and mudstone aquifer system on eastern 
Vancouver Island are largely a result of base-exchange 
softening and the consequent high pH levels.  It is evident 
that this process may be responsible for elevated fluoride 
levels in sandy aquifers around the world.   
 
Boron enrichment in the same waters may be the product 
of base-exchange softening, but could also be a 
consequence of freshwater flushing of an aquifer that was 
in equilibrium with boron-rich marine water as recently as 
6000 years ago.   
 
In view of the close correlations of both fluoride and boron 
with pH—here and elsewhere—we recommend the use of 
pH as a screening method for delineation of areas that 
have the potential for elevated levels of these elements.  
30 of our samples have pH greater than 8.5. Of these 30 
samples, 17 have fluoride levels greater than 1.5 mg/L.  
Only 2 out of the remaining 115 samples have fluoride 
greater than 1.5.   Similarly, 21 of the 30 high-pH samples 
have boron greater than 500 µg/L. Only 4 of the 
remaining 115 samples have boron greater than 500 
µg/L.  We propose that a pH of 8.5 be used a rapid 
screening threshold to predict water-quality risks 
associated with fluoride and boron in groundwater.   
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