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Abstract

This paper presents a brief synthesis of the current state of knowledge on the formation and break-up of the early-Neoproterozoic superconti-
nent Rodinia, and the subsequent assembly of Gondwanaland. Our discussions are based on both palaeomagnetic constraints and on geological
correlations of basement provinces, orogenic histories, sedimentary provenance, the development of continental rifts and passive margins, and the
record of mantle plume events.

Rodinia assembled through worldwide orogenic events between 1300 Ma and 900 Ma, with all, or virtually all, continental blocks known to
exist at that time likely being involved. In our preferred Rodinia model, the assembly process features the accretion or collision of continental
blocks around the margin of Laurentia. Like the supercontinent Pangaea, Rodinia lasted about 150 million years after complete assembly. Mantle
avalanches, caused by the sinking of stagnated slabs accumulated at the mantle transition zone surrounding the supercontinent, plus thermal
insulation by the supercontinent, led to the formation of a mantle superswell (or superplume) beneath Rodinia 40–60 million years after the
completion of its assembly. As a result, widespread continental rifting occurred between ca. 825 Ma and 740 Ma, with episodic plume events at
ca. 825 Ma, ca. 780 Ma and ca. 750 Ma.

Like its assembly, the break-up of Rodinia occurred diachronously. The first major break-up event occurred along the western margin of
Laurentia (present coordinates), possibly as early as 750 Ma. Rifting between the Amazonia craton and the southeastern margin of Laurentia
started at approximately the same time, but only led to break-up after ca. 600 Ma. By this time most of the western Gondwanan continents had
joined together, although the formation of Gondwanaland was not complete until ca. 530 Ma.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Valentine and Moores (1970) were probably the first to recog-
nise that a supercontinent, comprising just about all continents
on Earth, existed towards the end of the Precambrian. They sug-
gested that the break-up of the supercontinent, which they called
Pangaea I, by the Cambrian led to a divergence of environments
and characteristics amongst the daughter continents, and a sud-
den prominence of shallow, nutrient-rich shelves and coastal
areas, all factors conducive to the diversification of life forms on
Earth. This late-Precambrian supercontinent was later renamed
Rodinia (McMenamin and McMenamin, 1990) from the Russian
word ‘rodit’ meaning ‘to beget’ or ‘to give birth’. McMenamin
and McMenamin (1990) considered Rodinia to have been the
supercontinent that spawned all subsequent continents, while
“the edges (continental shelves) of Rodinia were the cradle of the
earliest animals” (McMenamin and McMenamin, 1990, p. 95).

The concept of the supercontinent Rodinia attracted much
attention in 1991, when three researchers (Moores, 1991;
Dalziel, 1991; Hoffman, 1991) published geological evidence
for the assembly and break-up of Rodinia, with some of its
daughter continents forming Gondwanaland. Common to their
propositions is the connection between western Laurentia, Aus-
tralia and East Antarctica (commonly known as the southwest
U.S.–East Antarctic, or SWEAT, connection; Moores, 1991),
which follows an earlier suggestion by Bell and Jefferson (1987)
based on stratigraphic correlations and palaeomagnetic con-
straints across the Pacific, and by Eisbacher (1985) based on
stratigraphic correlation alone.

An explosion of new data and ideas occurred in the follow-
ing years, and, in order to better coordinate the global efforts in
testing the Rodinia hypothesis, a UNESCO-IGCP project (No.
440, 1999–2004) was established to investigate the formation,
configuration, and break-up of Rodinia, and to construct an inter-
pretative Geodynamic Map of the Rodinia supercontinent (the
Rodinia Map hereafter; Appendix I, see hard copy in the print
version of this volume; also available online). Although few still
doubt the existence of a late Precambrian supercontinent, there
is still no consensus regarding the number of participating cra-
tons, their relative configuration within the supercontinent and
the chronology and mode of assembly and break-up of the super-
continent. In this paper we provide an overview of evidence for
and against major Rodinian reconstructions, including those in
the Rodinia Map (Appendix I). We discuss some current ideas
regarding the formation of Rodinia and processes that led to its
break-up, and present an animation for the evolution of Rodinia
from 1100 Ma till the formation of Gondwanaland at 530 Ma
(Appendix II, available online).

The challenges to reconstructing the history of Rodinia
include inadequate high-quality geological, geochronological
and palaeomagnetic data, multiple possible interpretations for
each data set, and uncertainties in fundamental assumptions
such as the application of modern-style plate tectonics to
late-Precambrian time and that the geomagnetic field was a
geocentric axial dipole field (an assumption that underlines
interpretations of palaeomagnetic data). In this paper we
assume that modern-style plate tectonics, with the possible

complication of true polar wander (TPW), apply to late Pre-
cambrian (e.g., Stern, 2005), and that the geomagnetic field was
dominantly a geocentric axial dipole field at that time (Evans,
2006). We emphasise the importance of considering multiple
lines of evidence in testing any reconstruction, because only
through such an approach can the potentially large number of
solutions be reduced to the most likely scenarios (Fig. 1a). We
strive to be as objective as possible when discussing alternative
interpretations, at the same time trying to make a self-consistent
synthesis. We emphasise that not every opinion expressed in
this paper is agreed on by all co-authors.

2. Major inter-continental connections proposed for
Rodinia using multidisciplinary evidence

Because Laurentia is flanked by Neoproterozoic passive mar-
gins, it is commonly regarded as being at the centre of Rodinia
assembly and break-up (e.g., Hoffman, 1991). We will evalu-
ate the various continental connections around the margin of
Laurentia proposed for Rodinia time.

2.1. Continents facing the present western and northern
margins of Laurentia: Australia–East Antarctica, South
China, or Siberia?

2.1.1. The SWEAT hypothesis
The question of which continent(s) used to lie adjacent to

the present western margin of Laurentia during the existence
of Rodinia has been central to the Rodinia debate, and the topic
remains controversial today. Among the competing models,
the earliest and perhaps the best-known model is the SWEAT
hypothesis (Fig. 2a). The model builds on the similar Neopro-
terozoic stratigraphy of the western margin of Laurentia and
eastern Australia as recognised earlier by Eisbacher (1985) and
Bell and Jefferson (1987), and elaborated later by Young (1992)
and Rainbird et al. (1996) among others. Three landmark papers
in 1991 (Moores, 1991; Dalziel, 1991; Hoffman, 1991) also
used basement outcrops as piercing points that may correlate
from one continent to the other, such as the correlation of
Grenville-age (ca. 1300–1000 Ma) orogenic belts, to argue that
the SWEAT connection probably existed as early as 1900 Ma
ago and lasted until mid to late Neoproterozoic times. Moores
(1991) implied that the united northern and western Australian
craton might not have become part of the SWEAT connection
until its collision with the Gawler craton along the late Meso-
proterozoic Albany-Fraser-Musgrave belt. Powell et al. (1993)
confirmed that a SWEAT connection was palaeomagnetically
permissible for the time interval of ca. 1050–720 Ma based on
the contemporary palaeomagnetic database, but would have to
have broken apart by 580 Ma (or >650 Ma as pointed out earlier
by Van der Voo et al., 1984, on palaeomagnetic grounds).

Closer scrutiny of the crustal provinces and basin provenance
analysis, however, have shown that geological discontinuities
exist across the SWEAT connection. In particular, isotopic and
geochemical mapping along the Transantarctic Mountains has
revealed that Mesoproterozoic basement provinces as young as
ca. 1000 Ma along the continental margin truncate the Lau-
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Fig. 1. (a) A schematic diagram illustrating the importance of taking a multidisciplinary and global approach in reconstructing palaeogeography in relation to the
evolution of a Precambrian supercontinent (when biogeography is of limited value). The line from each research aspect symbolises an infinite number of possible
solutions, with concentration of their intersections giving the most likely solution. (b) Present locations and major crustal elements of the Precambrian continental
blocks.

rentian crustal provinces (Borg and DePaolo, 1994). To make
the SWEAT connection viable, these authors suggested that
those basement blocks were probably exotic in origin and were
accreted to the East Antarctic margin after the opening of the
proto-Pacific Ocean. Although this may be so for some of the
terranes along the Cambrian Ross–Delamerian Orogen (Stump,
1995), there is no geological evidence for the docking of ter-
ranes like the Beardmore terrane, which would have to have
occurred in a very narrow time window between the break-up

of the SWEAT connection (ca. 750 Ma, see later discussions)
and the development of the Beardmore Group passive-margin
deposits no later than 668 ± 1 Ma (Goodge et al., 2002).

There are other lines of evidence that do not support the
SWEAT connection. (1) There is a lack of continuation of the ca.
1400 Ma (1500–1350 Ma) transcontinental magmatic province
of southern Laurentia (e.g., Nyman et al., 1994; Van Schmus et
al., 1996) into the Transantarctic Mountains, although one could
argue that they could be beneath the ice farther inland (Goodge



Author's personal copy

182 Z.X. Li et al. / Precambrian Research 160 (2008) 179–210

et al., 2002). (2) There are mismatches in the Neoproterozoic
mantle plume record across the SWEAT connection (Park et
al., 1995; Wingate et al., 1998; Li et al., 1999; see more dis-
cussion in Section 2.1.2). (3) The Belt Basin of western North
America and the possibly overlying Buffalo Hump Formation

(the Deer Trail Group) require a western clastic source with
rocks of 1786–1642 Ma, 1600–1590 Ma and 1244–1070 Ma,
much of which cannot easily be identified in East Antarc-
tica in the SWEAT configuration (Ross et al., 1992; Ross and
Villeneuve, 2003). (4) The originally proposed continuation of

Fig. 2. Palaeomagnetic examinations of alternative configurations of continents west and north of Laurentia. Palaeopoles used are listed in Table 1, and Euler rotation
parameters given in Appendix III (available online). (a) In the SWEAT fit (after Moores, 1991; Dalziel, 1991; Hoffman, 1991) palaeopoles from Laurentia (grey
diamonds) and Australia (purple diamonds) do not merge until ca. 1050 Ma. (b) In the “Missing-Link” configuration (after Li et al., 1995) ca. 820–800 Ma poles
from India, Australia and South China fall close to each other but the ca. 750 Ma poles are scattered. No dated ca. 820–800 Ma pole is available from Laurentia
for a comparison. (c) In the AUSWUS configuration (Karlstrom et al., 1999; Burrett and Berry, 2000) ca. 1200 Ma poles from Laurentia and Australia fall >30◦
apart, whereas some of their 1100–1050 Ma poles follow the same apparent polar wander path (APWP). (d) In the AUSMEX configuration (Wingate et al., 2002)
five of the seven ca. 1200–1050 Ma poles from Australia fall away from coeval Laurentian poles. (e) Siberia placed against Laurentia following Sears and Price
(1978, 2000), in which the Siberian poles fall away from the Laurentia poles. (f) Siberia–Laurentia configuration following Pisarevsky et al. (2008), in which ca.
1050–970 Ma Siberian poles follow the same APWP as the Laurentian poles. In this figure and Figs. 5–7, all continents were rotated to Laurentia which is at its
900 Ma palaeolatitude. Latitude and longitude lines are shown in 30◦ intervals. Geotectonic polygon data are shown following the legend for the Rodinia Map (as in
Figs. 1b and 8 and Appendix I).
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Fig. 2. (Continued ).

the Grenville belt into the Coats Land and Dronning Maud
Land of East Antarctica (Moores, 1991; Dalziel, 1991) was
later proved untenable both palaeomagnetically (e.g., Gose et
al., 1997) and geologically (e.g., Jacobs et al., 2003a,b). Coats
Land was more likely part of Laurentia at 1110 Ma (e.g., Gose et
al., 1997), but became connected with Kalahari when Kalahari
collided with Laurentia at 1090–1060 Ma, and remained con-
nected until the break-up of Gondwanaland (e.g., Jacobs et al.,
2003a,b, 2008).

There is also a growing body of evidence suggesting the
possible presence of Grenvillian orogenic belts along both the
western margin of Laurentia and eastern Australia. On the
Australia–East Antarctica side, apart from the possible pres-
ence of late Mesoproterozoic basement provinces along the
Transantarctic Mountains (Borg and DePaolo, 1994), Berry et
al. (2005) recently reported a 1287 ± 18 Ma metamorphic age
(monazite U–Th–Pb) from King Island northwest of Tasmania
(#1 in Fig. 2a), and Fioretti et al. (2005) published a 1119 ± 9 Ma
age for quartz syenite at the South Tasman Rise. Like the base-
ment for the Transantarctic Mountains, an allochthonous origin
for northwestern Tasmania and King Island is possible, but the
following observations argue against such a possibility: (a) the
palaeomagnetic record shows that northwestern Tasmania was
already part of cratonic Australia by the Late Cambrian (Li et al.,
1997), and there is no prior compressional event recognised in
the region that reflects terrane amalgamation between the time
of Rodinia break-up (ca. 750 Ma, see Section 3.2) and the Late
Cambrian; (b) the Neoproterozoic tectonostratigraphy of north-
western Tasmania and King Island can be well correlated with
that of the Adelaide Fold Belt (Calver and Walter, 2000; Holm et
al., 2003; Li, 2001; Z.X. Li et al., 2003b). A possible Grenvillian
province has also been identified in northern Queensland (#2 in
Fig. 2a; Blewett et al., 1998; Hutton et al., 1996), largely based
on detrital zircon ages.

A number of studies reporting Grenvillian orogenic events
along the western margin of Laurentia have yet to attract much
attention. Perhaps most significant are the 1090–1030 Ma meta-
morphic ages (titanite U–Pb) from 1468 ± 2 Ma mafic sills
in the Belt-Purcell Supergroup (#3 in Fig. 2a; Anderson and
Davis, 1995). In the Mackenzie Mountains (#4 in Fig. 2a),
there is evidence for an east-west compressional event (the Corn
Creek Orogeny) that occurred after 1033 Ma but before 750 Ma
(Thorkelson, 2000; Thorkelson et al., 2005). There is also a less-
well defined 1175–1100 Ma recrystallisation age from a granite
clast brought up from the basement in a diatreme (Jefferson and
Parrish, 1989).

If there were indeed Grenvillian orogenic belts between Lau-
rentia and Australia–East Antarctica, it would suggest that even
if a SWEAT connection existed, it would have to have been
Grenvillian or later.

Palaeomagnetic data permit a SWEAT connection after ca.
1050 Ma (Powell et al., 1993), but such a connection is not
possible at ca. 1200 Ma (Fig. 2a; Pisarevsky et al., 2003a)
although the reliability of the ca. 1200 Ma pole for Australia
needs further verification. This scenario is consistent with pre-
Grenvillian geological mismatches discussed above. However,
we do not preclude the possible existence of a SWEAT-like link
between Australia and Laurentia during late-Paleoproterozoic
(ca. 1800–1600 Ma), as suggested by Idnurm and Giddings
(1995) and Betts and Giles (2006).

2.1.2. The “Missing-Link” model
The “Missing-Link” model proposed by Li et al. (1995) has

the South China Block sitting between Australia–East Antarc-
tica and Laurentia in Rodinia, serving as the “missing-link”
between the two continents (Fig. 2b). The model was initially
developed in view of: (a) mismatches in the crustal provinces
of Australia–East Antarctica and Laurentia (see discussions in
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Table 1
Selected palaeomagnetic poles used for reconstructing the late-Mesoproterozoic to Neoproterozoic global palaeogeography

Rock unit Age (Ma) Pole A95 (◦) Reference

(◦N) (◦E)

Laurentia
Long Range dykesa 620–610 19 355 18 Murthy et al. (1992); Kamo and Gower (1994)
Franklin dykes 723 + 4/−2 5 163 5 Heaman et al. (1992); Park (1994)
Natkusiak Formation 723 + 4/−2 6 159 6 Palmer et al. (1983); Heaman et al. (1992)
Kwagunt Formation 742 ± 6 18 166 7 Weil et al. (2004)
Tsezotene sills and dykes 779 ± 2 2 138 5 Park et al. (1989); LeCheminant and Heaman

(1994)
Wyoming dykes 782 ± 8; 785 ± 8 13 131 4 Harlan et al. (1997)
Galeros Formation 780–820 −2 163 6 Weil et al. (2004)
Haliburton intrusions A 980 ± 10; 1000–1030 −36 143 10 Buchan and Dunlop (1976); Warnock et al.

(2000)
Chequamegon sandstone ∼1020b −12 178 5 McCabe and Van der Voo (1983)
Jacobsville sandstone J (A+B) ∼1020b −9 183 4 Roy and Robertson (1978)
Freda sandstone 1050 ± 30 2 179 4 Henry et al. (1977); Wingate et al. (2002)
Nonesuch shale 1050 ± 30 8 178 4 Henry et al. (1977); Wingate et al. (2002)
Lake Shore Traps 1087 ± 2 22 181 5 Diehl and Haig (1994); Davis and Paces (1990)
Portage Lake volcanics 1095 ± 2 27 181 2 Halls and Pesonen (1982); Davis and Paces

(1990)
Upper North Shore volcanics 1097 ± 2 32 184 5 Halls and Pesonen (1982); Davis and Green

(1997)
Logan sills R 1109 + 4/−2 49 220 4 Halls and Pesonen (1982); Davis and Sutcliffe

(1985)
Abitibi dykes 1141 ± 2 43 209 14 Ernst and Buchan (1993)
Wind River, Gr. B 1300–1500 22 209 9 Harlan et al. (2003a,b)
Mackenzie dolerite dykes 1267 ± 2 4.0 190.0 5.0 Buchan and Halls (1990)
Nain anorthosite 1320–1290 12.0 210.0 3.0 From Buchan et al. (2000)
Mistastin complex ∼1420 −1.0 201.0 8.0 From Buchan et al. (2000)
Laramie complex and Sherman granite ∼1434 −7.0 215.0 4.0 From Buchan et al. (2000)
Harp Lake complex ∼1450 2.0 206.0 4.0 From Buchan et al. (2000)
Michikamau anorthosite pluton ∼1460 −2.0 218.0 5.0 From Buchan et al. (2000)
Molson dykes, component A ∼1820–1720 15.4 263.5 4.0 From Buchan et al. (2000)

Baltica
Hunnedalen dykes >848 −41 222 10 Walderhaug et al. (1999)
Egersund-Ogna anorthosite ∼900 −42 200 9 Brown and McEnroe (2004)
Egersund anorthosite 929–932 −44 214 4 Stearn and Piper (1984); Torsvik and Eide

(1998)
Hakefjorden 916 ± 11 5 249 4 Stearn and Piper (1984); Scherstén et al. (2000)
Göteborg-Slussen 935 ± 3 −7 242 12 Pisarevsky and Bylund (2006)
Dalarna dykes 946 ± 1 5 239 15 Bylund and Elming (1992), Söderlund et al.

(2005)
Karlshamn-Fäjö dykes 946–954 2 242 30 Patchett and Bylund (1977), Söderlund et al.

(2004)
Nilstorp dyke 966 ± 2 9 239 8 Patchett and Bylund (1977), Söderlund et al.

(2004)
Pyätteryd amphibolite 933–945 −43 214 11 Pisarevsky and Bylund (1998); Wang et al.

(1996); Wang and Lindh (1996)
Känna gneiss 948–974 −50 225 17 Pisarevsky and Bylund (1998); Wang et al.

(1996); Wang and Lindh (1996)
Gällared amphibolite 956? −46 214 19 Pisarevsky and Bylund (1998); Möller and

Söderlund (1997)
Gällared granite-gneiss 980–990 −44 224 6 Pisarevsky and Bylund (1998); Möller and

Söderlund (1997)
Bamble intrusions 1100–1040 3 217 15 Torsvik and Eide (1998); Brown and McEnroe

(2004)
Laanila dolerite 1045 ± 50 −2 212 15 Mertanen et al. (1996)
Mean Jotnian dolerite intrusions ∼1265 4.0 158.0 4.0 From Buchan et al. (2000)
Åland quartz porphyry dykes 1571 ± 20; 1571 ± 9 12.0 182.0 7.0 From Buchan et al. (2000)
Åland dolerite dykes 1577 ± 12 28.0 188.0 9.0 From Buchan et al. (2000)
Subjotnian quartz porphyry dykes ∼1630 29.0 177.0 6.0 From Buchan et al. (2000)
Shoksha Formation, Vepsian Group ∼1780 39.7 221.1 4.0 From Buchan et al. (2000)
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Table 1 (Continued )

Rock unit Age (Ma) Pole A95 (◦) Reference

(◦N) (◦E)

India
Mahe dykes, Seychellesc 748–755 80 79 11 Torsvik et al. (2001b)
Malani Igneous Suite 751–771 68 88 8 Torsvik et al. (2001a)
Harohalli dykes 814 ± 34 27 79 18 Radhakrishna and Mathew (1996)
Wajrakarur kimberlites 1079? 45 59 11 Miller and Hargraves (1994)

Australia
Elatina Formation 600–620 51 157 2 Embleton and Williams (1986)
Elatina Formation 600–620 54 147 1 Schmidt et al. (1991)
Elatina Formation 600–620 52 167 11 Schmidt and Williams (1995)
Elatina Formation 600–620 39 186 9 Sohl et al. (1999)
Yaltipena Formation 620–630 44 173 8 Sohl et al. (1999)
Mundine Well dykes 755 ± 3 45 135 4 Wingate and Giddings (2000)
Walsh Tillite 750–770 22 102 14 Li (2000)
Hussar Formation 800–760 62 86 10 Pisarevsky et al. (2007)
Browne Formation 830–800 45 142 7 Pisarevsky et al. (2007)
Wooltana Formation ∼820 62 322 17 McWilliams and McElhinny (1980)
Kulgera dykes 1054 ± 13 −8 75 6 Schmidt et al. (2005)
Bangemall Basin sills 1070 ± 6 34 95 8 Wingate et al. (2002)
Stuart dykes 1076 ± 33 10 262 10 Idnurm and Giddings (1988)
Lakeview dolerite 1116 ± 12 10 311 17 Tanaka and Idnurm (1994)
Bremer Bay & Whalebone Pt ∼1200 74 304 13 Pisarevsky et al. (2003a)
Mt. Barren Group 1205 ± 40 47 347 13 Pisarevsky et al. (2003a), Dawson et al. (2003)
Fraser dyke 1212 ± 10 56 3260 5 Pisarevsky et al. (2003a)

Congo
Mbozi Complex, Tanzania 755 ± 25 46 325 9 Meert et al. (1995); Evans (2000)
Gagwe lavas, Tanzania 795 ± 7 25 93 10 Meert et al. (1995); Deblond et al. (2001)

São Francisco
Ilheus dykes 1011 ± 24 30 100 4 D’Agrella-Filho et al. (1990); Renne et al.

(1990)
Olivença dykes, normal ∼1035b 16 107 8 D’Agrella-Filho et al. (1990); Renne et al.

(1990)
Itaju de Colonia ∼1055b 8 111 10 D’Agrella-Filho et al. (1990); Renne et al.

(1990)
Olivenca dykes (rever.) 1078 ± 18 −10 100 9 D’Agrella-Filho et al. (1990); Renne et al.

(1990)

Kalaharid

Ritscherflya Supergroup (rotated to
Kalahari)

1130 ± 12 61 29 4 Powell et al. (2001)

Umkondo Igneous Province 1105 ± 5 66 37 3 Powell et al. (2001); Wingate (2001)
Kalkpunt Formation, ∼1065? 57 3 7 Briden et al. (1979); Powell et al. (2001)
Central Namaqua ∼1030–1000 8 330 10 Onstott et al. (1986); Robb et al. (1999)

Siberia
Ust-Kirba sediments and sills ∼980 −8 183 10 Pavlov et al. (2002)
Kandyk Formation ∼1000 −3 177 4 Pavlov et al. (2002); Rainbird et al. (1998)
Ignikan Formation ∼1010 −16 201 4 Pavlov et al. (2000)
Nelkan Formation ∼1020 −14 219 6 Pavlov et al. (2000)
Milkon Formation ∼1025 −6 196 4 Pavlov et al. (2000)
Kumahinsk Formation ∼1030 −14 201 7 Pavlov et al. (2000)
Malgina Formation 1043 ± 14 −22 226 7 Osipova in Smethurst et al. (1998);

Ovchinnikova et al. (2001)
Malgina Formation 1043 ± 14 −25 231 3 Gallet et al. (2000); Ovchinnikova et al. (2001)
Chieress dyke 1384 ± 2 4 258 6.6 Ernst et al. (2000)
Kuonamka dykes 1503 ± 5 6 234 22 Ernst et al. (2000)

North China
Dongjia Formation, Lushan ∼650 −60.8 97.4 6.7 From Zhang et al. (2006)
Mean poles ∼700 −42.9 107.0 5.7 From Zhang et al. (2006)
Nanfen Formation 800–780 −16.5 121.1 11.1 From Zhang et al. (2006)
Cuizhuang/Sanjiaotang Formations 950 −41.0 44.8 11.3 From Zhang et al. (2006)
Tieling Formation 1100 2.2 163.6 25.3 From Zhang et al. (2006)
Baicaoping Formation 1200 −43.0 143.8 11.1 Zhang et al. (2006)
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Table 1 (Continued )

Rock unit Age (Ma) Pole A95 (◦) Reference

(◦N) (◦E)

Yunmengshan Formation 1260 −60.6 87.0 3.7 Zhang et al. (2006)
Yangzhuang/Wumishan Formations 1300 −17.2 45.0 5.5 From Zhang et al. (2006)
Yangzhuang Formation ∼1350 −17.3 3.5 5.7 Wu et al. (2005)
Taihang dyke swarm 1769.1 ± 2.5 −36.0 67.0 2.8 Halls et al. (2000)

Tarim
Aksu dykes 807 ± 12 19 128 6 Chen et al. (2004)
Baiyixi Formation ∼740 17 194 4 Huang et al. (2005)

South China
Doushantuo carbonates 584 ± 26 6 197 6 Macouin et al. (2004)
Liantuo Formation 748 ± 12 4 161 13 Evans et al. (2000)
Xiaofeng dykes 802 ± 10 14 91 11 Li et al. (2004)

Amazonia
Nova Floresta ∼1200 25 165 6 Tohver et al. (2002)

Oaxaquia
Oaxaca anorthosite ∼950 47 267 23 Ballard et al. (1989)

Abbreviations: SA, South Australia; NT, Northern Territory; WA, Western Australia.
a Recalculated by Hodych et al. (2004).
b Age based on APWP interpolation.
c Rotated to India 28◦ counterclockwise around the pole of 25.8◦N, 330◦E (Torsvik et al., 2001b).
d For ages see Powell et al. (2001) and references therein.

the previous section); (b) similarities in the Neoproterozoic
stratigraphy of South China, southeastern Australia and western
Laurentia as recognised earlier by Eisbacher (1985); (c) sim-
ilarities between crustal provinces in the Cathaysia Block of
southeastern South China and southern Laurentia; (d) the need
for a western source region to provide the late Mesoproterozoic
detrital grains in the Belt Basin. The modified reconstruction
(Fig. 2b) and the schematic history for the formation and break-
up of such a configuration were adapted for constructing the
Geodynamic Map of Rodinia (Appendix I) and the related
palaeogeographic time slices and animation. Although not a
unique solution, it negates the need for matching basement geol-
ogy between Australia–East Antarctica and western Laurentia
prior to 1000–900 Ma (see discussions in Section 2.1.1), and
is plausible in view of the currently known Neoproterozoic rift
record, early Neoproterozoic mantle plume record, and palaeo-
magnetic constraints. Key evidence for the model is discussed
below.

2.1.2.1. Cathaysia as an extension of Laurentia from
ca. 1800 Ma until Rodinia time, and no connection
between Australia–East Antarctica, Yangtze craton and
Laurentia–Cathaysia until 1100–900 Ma. The Cathaysia
Block, although poorly exposed, has a crustal composition
similar to what may be expected for the western source region of
the Belt Basin in southwestern Laurentia (Ross et al., 1992). It
has a ca. 1830–1430 Ma basement that recorded 1300–1000 Ma
metamorphism (Z.X. Li et al., 2002). Hainan Island in this
block is particularly similar to the Mojave Province in that it
has ca. 1430 Ma granitic intrusions, as well as synchronous
intracratonic sedimentary and volcanic successions (Z.X.
Li et al., 2002, and unpublished data), comparable to the
1500–1350 Ma transcontinental granite–rhyolite province of

southern Laurentia (e.g., Nyman et al., 1994). The sedimentary
provenance of quartzite in the overlying post-1200 Ma succes-
sion (Li et al., unpublished data), assumed to have sourced from
older Cathaysian rocks, contains populations comparable to the
1610–1490 Ma, westerly sourced non-Laurentian detrital grains
reported in the Belt Basin (Ross and Villeneuve, 2003). It is thus
plausible to have Cathaysia as a part of Laurentia for at least
the latter part of the 1830–1000 Ma interval (Figs. 2b and 3).

According to the “Missing-Link” model, the collision
between Laurentia–Cathaysia and Yangtze did not start until ca.
1140 Ma or younger at one end of the Sibao Orogen (Greentree
et al., 2006), and lasted until ca. 900 Ma at the other end in
South China (Z.X. Li et al., 2003a; Ling et al., 2003). This late
formation of the Laurentia–South China–Australia–East Antarc-
tica connection provides an explanation for the occurrence of
Grenvillian orogenic events along western Laurentia, north-
ern Queensland, King Island-Transantarctic Mountains, and the
Albany-Fraser-Musgrave belt.

2.1.2.2. Neoproterozoic plume record. Large features related
to mantle plume events, such as radiating dyke swarms or large
igneous provinces, can be used for reconstructing past continen-
tal connections (e.g., Ernst et al., 1995, 2008). Park et al. (1995)
were the first to apply this technique to test the SWEAT con-
nection, but precise dating of the relevant dyke swarms revealed
that their ages are too different to represent the same event:
ca. 825 Ma for the Gairdner-Amata dyke swarm in central and
southeastern Australia (Sun and Sheraton, 1996; Wingate et al.,
1998), and ca. 780 Ma for the radiating Gunbarrel dyke swarms
in western Laurentia (e.g., Harlan et al., 2003a,b). No counter-
part of the Australian 825 Ma event has been reported in western
Laurentia as one would expect in the SWEAT configuration. The
radiating 780 Ma Gunbarrel dyke swarm in western Laurentia
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Fig. 3. Tectonostratigraphic correlations between Australia, Yangtze craton, Cathaysia and Laurentia. Major glaciations: M = Marinoan; S = Sturtian; N = Nantuo;
C = Changan; I = Ice Brook; R = Rapitan.

points to a plume-centre to its west (present coordinates), but in
eastern Australia there is no evidence for a plume centre apart
from limited volcanism in the Adelaide Rift Complex (Preiss,
2000) and minor mafic igneous rocks in northwestern Tasmania
(Holm et al., 2003).

Li et al. (1999) and Z.X. Li et al. (2003b) presented evi-
dence for South China being above a plume centre at both ca.
825 Ma and 780 Ma, which is consistent with its position in
the “Missing-Link” configuration (Fig. 4). Key evidence for
a ca. 825 Ma plume-head beneath South China includes the
widespread occurrence of magmatism with rock types ranging
from granite to mafic–ultramafic dykes and sills (implying mafic
underplating and a large heat source), large-scale syn-magmatic
doming, and the development of ca. 820 Ma continental rift sys-
tems (Li et al., 1999; X.H. Li et al., 2003a,b; Ling et al., 2003;
Wang and Li, 2003). A similar large-scale magmatic breakout
occurred at ca. 780 Ma, with some mafic dykes showing geo-
chemical characteristics of continental flood basalts (Z.X. Li et
al., 2003b; Lin et al., 2007). It should be noted that alternative
geochemical interpretations exist for the 825–740 Ma magma-
tism in South China (e.g., arc magmatism, Zhou et al., 2002;
magmatism caused by post-orogenic slab break-off, Wang et al.,
2006).

2.1.2.3. Neoproterozoic rift records and glacial events. Rift-
ing records in South China show remarkable similarities to that
of eastern Australia, featuring four major episodes of magma-
tism and rifting in the ca. 830–700 Ma interval: ca. 820 Ma, ca.
800 Ma, ca. 780 Ma, and ca. 750–720 Ma (Powell et al., 1994;

Li et al., 1995, 1999; X.H. Li et al., 2002; Z.X. Li et al., 2003b;
Preiss, 2000; Wang and Li, 2003) (Fig. 3). A rift–drift transition
has been identified in the Adelaidean stratigraphy to be between
the ca. 720 Ma Sturtian glacial deposits and the overlying Tapley
Hill Formation (Powell et al., 1994).

There is no record of rifting along western Laurentia until
after the 780 Ma Gunbarrel dyke swarm (e.g., Harlan et al.,
2003a,b). Rift magmatism mainly occurred between 750 Ma and
720 Ma (e.g., Heaman et al., 1992; Ross and Villeneuve, 1997;
Karlstrom et al., 2000), although evidence exists for events of
younger ages (Lund et al., 2003; Fanning and Link, 2004) as
in South China (e.g., Zhou et al., 2004; Zhang et al., 2005).
Along with the glacial record, the post-780 Ma tectonostratigra-
phy of western Laurentia, eastern Australia (e.g., Young, 1992;
Rainbird et al., 1996) and South China (e.g., Wang and Li,
2003) are widely regarded as correlative (Fig. 3), although such
a correlation is not unique across the globe.

2.1.2.4. Palaeomagnetism. Another advantage of the
“Missing-Link” model is that it does not require a com-
mon apparent polar wander path (APWP) between the relevant
continents until amalgamation sometime between 1000 Ma and
900 Ma. On the other hand, the currently available palaeomag-
netic data for ca. 820–800 Ma permit such an Australia–South
China–Laurentia configuration at that time, although it must
have broken up by ca. 750 Ma (Li et al., 2004; note the
overlap between the 820 Ma and 800 Ma palaeopoles for India,
Australia and South China, and the scatter in the ca. 750 Ma
poles in Fig. 2b).
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Fig. 4. Evidence for plume activities in the Missing-Link model: GD, Gairdner-
Amata dyke swarm (Sun and Sheraton, 1996; Wingate et al., 1998); BH, Bow Hill
lamprophyre dykes (Pidgeon et al., 1989); GB, Guibei mafic–ultramafic intru-
sions (Li et al., 1999); GUN, Gunbarrel dyke swarms (Harlan et al., 2003a,b);
KD, Kangding dykes and mafic intrusions (Z.X. Li et al., 2003b; Lin et al.,
2007); T, Mafic and granitic intrusions in Tasmania (Holm et al., 2003).

However, the configuration in Fig. 2b is not unique either
geologically or palaeomagnetically. An alternative position for
South China northeast of Australia satisfies the ca. 750 Ma poles
(Evans et al., 2000), but contradicts the ca. 800 Ma poles (Li
et al., 2004). Positions to the northwest or west of Australia,
and adjacent to the northern margin of Greater India, have also
been proposed (Evans et al., 2000; Jiang et al., 2003; Li et al.,
2004; Yang et al., 2004), but the geological matches in these
configurations are not as strong as in the “Missing-Link” con-
figuration discussed above. Also, by removing South China from
the “Missing-Link” configuration, one would have to find other
explanations for the geological and palaeomagnetic mismatches
between Australia–East Antarctica and Laurentia as discussed
in Section 2.1.1.

2.1.3. The AUSWUS and AUSMEX connections
AUSWUS (Australia–Southwest US)-like fit (Fig. 2c) was

first suggested by Brookfield (1993) based on matching lin-
ear fractures supposedly formed during the break-up of Rodinia
along the margins of eastern Australian craton and western Lau-
rentia. However, the lineaments along the eastern margin of
the Australian craton were later shown to be no older than ca.
600 Ma (Direen and Crawford, 2003). The AUSWUS connec-
tion was later revived by Karlstrom et al. (1999) and Burrett and
Berry (2000), mostly through matching basement provinces and
sedimentary provenances between Australia and southwestern
Laurentia (also see Blewett et al., 1998; Berry et al., 2001; Ross
and Villeneuve, 2003; Wade et al., 2006). Despite its merits as
stated by its proponents, there are noticeable difficulties in this
model (Fig. 2c), namely:

(1) The truncation of the Albany-Fraser-Musgrave belt against
cratonic western Laurentia, and difficulties in explaining the
scattered evidence of Grenvillian metamorphism in west-
ern Laurentia, northern Queensland, Tasmania and the Ross
Orogen (see Section 2.1.1).

(2) The lack of a prominent ca. 1400 Ma granite–rhyolite
province in Australia as is present in southern Laurentia.

(3) The lack of a ca. 825 Ma plume record in Laurentia as a
counterpart to the Gairdner-Amata dyke swarm in Australia
(Wingate et al., 1998), and a lack of ca. 780 Ma plume record
in northern Australia, where one would expect to find a
plume-head for the 780 Ma Gunbarrel radiating dyke swarm
in western Laurentia in such a configuration.

(4) The significantly younger starting age of continental rift-
ing in western Laurentia (<750 Ma) compared with eastern
Australia (ca. 825 Ma).

(5) The ca. 1200 Ma palaeomagnetic misfit (Pisarevsky et al.,
2003a), although the ca. 1100–1050 Ma palaeopoles mostly
agree rather well (Fig. 2c).

Based on a new 1070 Ma palaeomagnetic pole from the Bange-
mall Basin sills in the Edmund Fold Belt of Western Australia,
Wingate et al. (2002) argued that previous poles of the same age
from central Australia (poles marked as 1076 Ma and 1054 Ma
in Fig. 2b and c) are unreliable. Using only their own pole,
they argued that if Australia was connected to Laurentia at
ca. 1070 Ma, the connection could only have been between
northern Queensland of Australia and Mexico of southern Lau-
rentia (the AUSMEX fit; Fig. 2d). However, subsequent work
on the 1070 Ma rocks in central Australia reaffirmed the reli-
ability of the central Australian poles (Schmidt et al., 2005).
Therefore it appears probable that either the 1070 Ma Bange-
mall Basin sills, or the central Australian data, have suffered
vertical-axis rotations, during either the ≥900 Ma (40Ar–39Ar
cooling ages) Edmundian Orogeny in the southern Capricorn
Orogen (Occhipinti and Reddy, 2005) in the case of the Bange-
mall sills, or the late Neoproterozoic Petermann or Phanerozoic
Alice Springs orogenies in central Australia. The geological
merit of the AUSMEX fit is yet to be demonstrated. Nonetheless,
a new palaeomagnetic pole from the 800 Ma to 760 Ma oriented
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cores from the Lancer-1 drill hole in the Officer Basin of south
Central Australia is more compatible with the ∼780 Ma Lau-
rentian poles in the AUSMEX configuration than in any of the
abovementioned configurations (Pisarevsky et al., 2007).

As mentioned earlier, ca. 1200 Ma poles do not permit either
an AUSWUS or an AUSMEX fit at that time (Pisarevsky et al.,
2003a; Fig. 2c and d).

2.1.4. Siberia–Laurentia connection
Although there is a consensus that Siberia was likely con-

nected to Laurentia for much of the Proterozoic, opinions differ
regarding how they were connected. The dominant view is
that Siberia was adjacent to northern Laurentia, but different
models show its position in a range of orientations (Hoffman,
1991; Condie and Rosen, 1994; Pelechaty, 1996; Frost et al.,
1998; Rainbird et al., 1998; Ernst et al., 2000; Vernikovsky
and Vernikovskaya, 2001; Metelkin et al., 2005a; see review
by Pisarevsky et al., 2003b). A vastly different position for
Siberia was proposed by Sears and Price (1978, 2000) with
Siberia placed west of the present western margin of Lauren-
tia. However, this latter fit is not supported by palaeomagnetic
data (Fig. 2e) which show that Siberian poles fall far away from
coeval palaeopoles for Laurentia in such a configuration. The
configuration we adopted for the Rodinia Map follows that of
Pisarevsky et al. (2008). It is largely based on existing palaeo-
magnetic constraints for the ∼1050–970 Ma interval between
Siberia and Laurentia (Fig. 2f, which shows that Siberian poles
generally follow the APWP of Laurentia for the 1043–980 Ma
interval). Detailed discussions for the various models are given
in Pisarevsky et al. (2008).

Palaeomagnetic data place Siberia at some distance from
the northern Laurentian margin, allowing space for other Pre-
cambrian blocks (e.g., Arctida of Zonenshain et al., 1990;
Vernikovsky, 1997; Vernikovsky et al., 2003). The relative dis-
tance between Siberia and Laurentia explains the lack of any
counterpart for the Mackenzie large igneous event in Siberia.
Sklyarov et al. (2003), Metelkin et al. (2005c) and Gladkochub
et al. (2006) reported mafic intrusions in southern Siberia with
40Ar–39Ar ages around ∼740 Ma that may be correlated with the
Franklin igneous event in northern Laurentia associated with the
Neoproterozoic opening of the Palaeo-Asian Ocean. This event
broadly coincides with the accumulation of the Karagas Group
in south Siberia, which has been interpreted as a passive margin
succession (Pisarevsky and Natapov, 2003; Vernikovsky et al.,
2003; Gladkochub et al., 2006). This earlier break-up model con-
trasts with the Early Cambrian break-up suggested by Pelechaty
(1996) based on tectonostratigraphic analyses, with the latter
model being challenged by both Rainbird and de Freitas (1997)
and Khudoley (1997).

2.2. Continents along the present eastern margin of
Laurentia: Baltica, Amazonia and West Africa cratons

The relative position of Baltica to Laurentia in Rodinia is
probably one of the least controversial. Although geological cor-
relations suggest that the two blocks could have been together
as long ago as ca. 1800 Ma (e.g., Gorbatschev and Bogdanova,

Fig. 5. Positions of Baltica, Amazonia and West Africa in Rodinia, with palaeo-
magnetic South poles showing data from Baltica (green poles) merge with that of
Laurentia (black poles) by ca. 1000 Ma. Orange dots represent ca. 1500–1350 Ma
intracratonic magmatism.

1993; Karlstrom et al., 2001; see also Zhao et al., 2002 for
a review) or even before (e.g., Heaman, 1997; Bleeker and
Ernst, 2006), palaeomagnetic data suggest a rather complex
history between the two cratons during the Mesoproterozoic
(e.g., Elming et al., 1993, 2001; Buchan et al., 2000, 2001;
Pesonen et al., 2003). The configuration we adapted in the
Rodinia Map (Appendix I; Fig. 5) follows that of Hoffman
(1991; see also Bogdanova et al., 2008; Pease et al., 2008),
which is a geologically based reconstruction but is also sup-
ported by a common APWP between the two cratons for the
∼1000–900 Ma interval (Elming et al., 1993; Hyodo et al., 1993;
Weil et al., 1998; Pisarevsky et al., 2003b; Fig. 5). It is noted
that, although pre-1000 Ma palaeomagnetic data do not permit
exactly the same configuration, they still allow the two adja-
cent cratons to develop correlative Proterozoic belts including
the Sveconorwegian and Grenville orogens (Winchester, 1988;
Gower et al., 1990; Gorbatschev and Bogdanova, 1993), and
similar ca. 1500–1350 Ma intracratonic magmatism (Åhäll and
Connely, 1998; Karlstrom et al., 2001; Bogdanova et al., 2001,
2008; Čečys et al., 2002; Söderlund et al., 2002, 2005; Čečys
and Benn, 2007).

The position of the Amazonia craton roughly follows that
of Hoffman (1991, a geologically based reconstruction) and
Weil et al. (1998), (a palaeomagnetic reconstruction). Amazo-
nia was one of the cratons that was separated from Laurentia by
a Mesoproterozoic ocean, the closure of which made it part of
Rodinia during the Grenvillian Orogeny (e.g., Davidson, 1995,
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2008; Rivers, 1997; Loewy et al., 2003). According to this
interpretation, the Rondonia-Sunsas belt in southwestern Ama-
zonia resulted from continental collision with Laurentia between
1080 Ma and 970 Ma (e.g., Sadowski and Bettencourt, 1996;
Tassinari et al., 2000 and references therein). A recent ∼1200 Ma
Amazonia palaeomagnetic pole reported by Tohver et al. (2002)
led these authors to suggest a possible juxtaposition of west-
ern Amazonia with the Llano segment of Laurentia’s Grenville
orogen. This is broadly in accord with the proposed history of
the Llano orogen (Mosher, 1998). Tohver et al. (2004, 2005)
more recently suggested that the initial docking of Amazonia
with southern Laurentia was followed by strike–slip transport of
Amazonia to the northeast (present coordinates). However, such
palaeomagnetic reconstructions, utilizing a single pole from
each continent rather than matching relatively long segments
of APWPs, have inherent longitudinal uncertainties.

Continental rifting along the eastern and southern margin of
Laurentia may have started as early as ca. 750 Ma (Su et al., 1994;
Aleinikoff et al., 1995; Fetter and Goldberg, 1995), although a
later pulse of magmatism at ∼615–570 Ma is commonly inter-
preted as representing the break-up and opening of the Iapetus
Ocean, first between Laurentia and Baltica, and then between
Laurentia and Amazonia (Cawood et al., 2001; Cawood and
Pisarevsky, 2006 and references therein).

There are few constraints on the position of the West Africa
craton in Rodinia. No orogen of Grenvillian age has been found
in or around the craton; therefore, if it was part of Rodinia, it
would likely have been part of a larger craton (e.g., together
with Amazonia, similar to their connection in Gondwanaland).
No palaeomagnetic data are available to verify this position.
Trompette (1994, 1997) proposed the existence of a single West
Africa–Amazonia–Rio de La Plata mega-craton in the Meso-
and Neoproterozoic, although their relative positions cannot be
defined precisely. Onstott and Hargraves (1981), on the basis
of a comparison of Paleo- to Mesoproterozoic palaeomagnetic
data from these two blocks, also suggested that the two cratons
were together during the Proterozoic but that large shear move-
ments occurred between them. We have used an Amazonia–West
Africa fit similar to their Gondwana fit.

2.3. Congo-São Francisco, Rio de la Plata and Kalahari
cratons

The positions of Congo-São Francisco and Kalahari cratons
relative to Laurentia in Rodinia (Fig. 6) broadly follow that pro-
posed by Hoffman (1991) on geological grounds, but with some
additional justifications according to more recent palaeomag-
netic results. The Rio de la Plata terrane is placed between the

Fig. 6. Positions of Congo, Rio de la Plata, Kalahari, India and Tarim in Rodinia. Palaeomagnetic data show that Congo-Sao Francisco did not join Laurentia until
after ca. 1010 Ma. The ca. 795 Ma pole from Congo-Sao Francisco overlaps with the ca. 814 Ma pole from India in this configuration, but their ca. 755 Ma poles are
widely separated (as the other ca. 755 Ma poles in Fig. 2b), suggesting this configuration was already disintegrating by that time.
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Congo-São Francisco craton and Laurentia in Rodinia (e.g., Weil
et al., 1998; D’Agrella-Filho et al., 2004).

The preservation of late Mesoproterozoic reworked and juve-
nile crust and orogenic events along the Irumide belt of the
Congo-São Francisco craton (e.g., De Waele et al., 2003) and
along the margin of the Rio de la Plata terrane (Fuck et al., 2008)
permits them to be the continents that joined Laurentia during
the Grenvillian Orogeny, although there are opinions that the
Congo-São Francisco craton may not have been part of Rodinia
at all (e.g., Kröner and Cordani, 2003; Pisarevsky et al., 2003b).
Palaeomagnetic data indicate the presence of a large latitudinal
gap (an ocean?) between the Congo-São Francisco craton and
Laurentia at ca. 1100–1050 Ma (D’Agrella-Filho et al., 2004);
the ≥1000 Ma orogenic events in the Irumide belt may indi-
cate closure of this ocean by ca. 1000 Ma (e.g., De Waele et
al., 2003, 2006a,b, 2008; De Waele, 2005; Johnson et al., 2006,
2007a).

The Kalahari craton, together with the Grunehogna terrane
(e.g., Groenewald et al., 1995; Jones et al., 2003) and perhaps
part of the Maud Province of East Antarctica (e.g., Fitzsimons,
2000), are placed against the Grenville belt in southern Laurentia
following Hoffman (1991) and Hanson et al. (1998). Palaeomag-
netic data from Kalahari and Laurentia at ca. 1110 Ma suggest
that there was a latitudinal difference of ca. 30 ± 14◦ between
their facing margins at that time (Powell et al., 2001; Hanson
et al., 2004), but by ca. 1000 Ma the APWPs of the two con-
tinents merged together in this configuration (Fig. 6). This is
consistent with metamorphic ages of as young as ca. 1000 Ma
along both the Namaqua-Natal belt in southern Kalahari (e.g.,
Eglington and Armstrong, 2003) and the Grenville belt in Lau-
rentia (e.g., Davidson, 1995; Rivers, 1997; Keppie et al., 2003;
Weber and Hecht, 2003). However, other possible positions of
Kalahari in Rodinia have also been proposed on geological and
palaeomagnetic grounds (e.g., Dalziel, 1997; Pisarevsky et al.,
2003b).

Like the Amazonia craton, the Congo-São Francisco, Rio de
la Plata and the Kalahari cratons are believed to have broken
away from Laurentia between 750 Ma (see evidence below) and
the final assembling of Gondwanaland by ca. 550–520 Ma (e.g.,
Meert, 2003; Collins and Pisarevsky, 2005). Rift magmatism at
ca. 750 Ma is present along the Grenvillian margin of Laurentia
(e.g., Su et al., 1994; Fetter and Goldberg, 1995; Aleinikoff et
al., 1995), the western margin of Kalahari (e.g., Frimmel et al.,
1996, 2001; Hoffman et al., 1996), and the Damaran margin of
the Congo-São Francisco craton (e.g., Hoffmann et al., 2004;
Halverson et al., 2005). The stratigraphy of the Kalahari and
Congo-São Francisco continental margins indicates rift–drift
transitions immediately after ca. 750 Ma (Frimmel et al., 1996;
Hoffman et al., 1996; Hoffmann et al., 2004; Halverson et al.,
2005; Johnson et al., 2007b). As shown in Fig. 6, ca. 750 Ma
palaeomagnetic poles from the Congo-São Francisco craton fall
>30◦ away from coeval poles of Laurentia.

The position of the Congo-São Francisco and Kalahari cra-
tons in Rodinia as shown in Fig. 6 is also consistent with
the common occurrence of ca. 830–745 Ma plume-induced
intraplate magmatism in these two cratons as well as coeval
magmatism in adjacent India, Australia, South China and Tarim

cratons (see Section 3.2). However, no pre-750 Ma Neoprotero-
zoic magmatism has yet been identified in southern Laurentia.

2.4. India, Madagascar, Seychelles, and the
Arabian–Nubian Shield

Geological data demonstrate that northeastern Madagascar
(the Antongil block) was part of the Indian craton before and
during Rodinia time (e.g., Collins and Windley, 2002; Collins
et al., 2003; Collins, 2006)—here we collectively call them the
Indian craton. The Seychelles appears to have formed along the
west margin of India during the Neoproterozoic (Torsvik et al.,
2001a,b).

The position of the Indian craton in Rodinia is controversial.
Earlier workers attached it to Australia and East Antarctica as
in the Gondwanan configuration (e.g., Dalziel, 1991; Hoffman,
1991; Moores, 1991; Li et al., 1996; Torsvik et al., 1996; Weil et
al., 1998). However, subsequent geological (Fitzsimons, 2000)
and palaeomagnetic (see below) investigations have challenged
such a configuration. Based on their palaeomagnetic results from
the 771 Ma to 751 Ma Malani igneous suite of northwestern
India, Torsvik et al. (2001a,b) suggested that India was either
not part of Rodinia, or was adjacent to the northwestern mar-
gin of Australia at Rodinia time and underwent a left-lateral
movement relative to Australia–East Antarctica before 535 Ma
to reach its Gondwanan position. Powell and Pisarevsky (2002)
supported the idea that India was probably never part of Rodinia
because a ca. 810 Ma pole (Radhakrishna and Mathew, 1996)
places India at a polar position when Rodinia was supposed to
occupy a largely low palaeolatitude position.

In the Rodinia Map (Appendix I), the position of India
between 900 Ma and 800 Ma is made following both geolog-
ical evidence (e.g., plume record as described by Z.X. Li et
al., 2003b) and palaeomagnetic interpretations as described by
Li et al. (2004). Both India and Seychelles have Neoproterozoic
bimodal magmatism similar to that in Australia and South China
in age distributions. Many interpreted this to represent continen-
tal arc magmatism, partly because of the perceived “continental
margin” positions of these continental blocks (e.g., Torsvik et
al., 2001a,b; Tucker et al., 2001; Ashwal et al., 2002). However,
their bimodal nature, the intraplate characteristics of the Malani
igneous suite (e.g., Roy, 2001; Singh and Vallinayagam, 2004)
and other Neoproterozoic intrusions elsewhere in India (e.g.,
Santosh et al., 1989), and their similar age distributions to plume-
related rocks in Australia and South China, make them more
likely the products of melting above Neoproterozoic plume-
heads during Rodinia time (e.g., Frimmel et al., 2001; Li et al.,
2001; Z.X. Li et al., 2003b).

Palaeomagnetically, a poorly dated ca. 1079 Ma pole from
India (Miller and Hargraves, 1994) does not agree with coeval
poles from Australia in the preferred Rodinia configuration,
whereas the ca. 810 Ma pole from India (Radhakrishna and
Mathew, 1996) agrees with similar-aged poles from South China
(Li et al., 2004), South Australia (McWilliams and McElhinny,
1980; however, the reliability of this pole has not been demon-
strated with confidence) (Fig. 2b), and the Congo-São Francisco
craton (Meert et al., 1995; Deblond et al., 2001) (Fig. 6).



Author's personal copy

192 Z.X. Li et al. / Precambrian Research 160 (2008) 179–210

We thus envisage that India became part of Rodinia by ca.
900 Ma through continental collision along the ca. 990–900 Ma
high-grade metamorphic Eastern Ghats belt of India and the cor-
responding Rayner Province in East Antarctica (e.g., Mezger and
Cosca, 1999; Boger et al., 2000, 2001; Fitzsimons, 2000; Kelly
et al., 2002; Fig. 6).

The ca. 770–750 Ma palaeopoles from the India craton are far
removed from the ca. 755 Ma pole of the Mundine Well dykes
in Australia (Wingate and Giddings, 2000) in this configuration
(Fig. 2b), indicating that if the configuration is correct, India
would have rifted away from Australia–East Antarctica by ca.
755 Ma.

There are few constraints on the positions of the numerous ter-
ranes constituting the East African Orogen (Stern, 1994), which
includes the Arabian–Nubian Shield and the ∼3000 km long
Azania continent that stretches from Arabia to central Madagas-
car (Collins and Windley, 2002; Collins and Pisarevsky, 2005;
Collins, 2006). Cox et al. (2004) and Fitzsimons and Hulscher
(2005) suggest that central Madagascar was part of the Congo-
São Francisco craton at ca. 1800 Ma but became an independent
terrane during Rodinia time and joined India by ca. 700 Ma.
Most of the terranes in the Arabian–Nubian Shield are believed
to represent juvenile Neoproterozoic arcs and micro-continental
fragments that accreted to western Gondwana during the Neo-
proterozoic (e.g., Stern, 1994; Whitehouse et al., 2001; Meert,
2003; Collins and Pisarevsky, 2005). However, the nature of
widespread 850–750 Ma igneous rocks in these terranes remains
controversial. Some believe they represent arc volcanism (e.g.,
Stern, 1994; Handke et al., 1999; Tucker et al., 2001). Others
suggest that those bimodal rocks were likely formed (1) dur-
ing continental extension (e.g., Kröner et al., 2000; Loizenbauer
et al., 2001) with possible underplating of plume magmatism,
(2) with contributions of oceanic plateaux (Stein and Goldstein,
1996), or (3) as arcs with a plume input (Teklay et al., 2002). The
Neoproterozoic Arabian–Nubian Shield is thought to represent
one of the most rapid episodes of predominantly juvenile crustal
generation in Earth’s history (Stein and Goldstein, 1996; Stein,
2003). As the age spectrum of these rocks is almost identical to
those in South China, Australia and India, there could indeed
have been a significant plume input as part of the Neoprotero-
zoic Rodinia superplume activity (Li et al., 2003; Hargrove et
al., 2004; see further discussions in Section 3.2).

In previous Rodinia reconstructions the Arabian–
Nubian Shield was either placed adjacent to northeast
Madagascar and India (e.g., Li and Powell, 2001), or adjacent,
and outboard of the Congo-São Francisco and Saharan cratons
(Collins and Pisarevsky, 2005). In the Rodinia Map (Appendix
I and Figs. 6 and 8), these terranes are placed between India
and Sahara, satisfying both the common plume records in
Australia, India, the Arabian Shield, and the African cratons,
and the records of arc accretion during the late Neoproterozoic
assembly of Gondwanaland.

2.5. Tarim

We have positioned the Tarim craton of northwest China adja-
cent to northwestern Australia (Fig. 6) following the suggestion

of Li et al. (1996) that was based on tectonostratigraphic corre-
lations, with some palaeomagnetic justifications. Minor terranes
(such as the Cimmerian terranes, Metcalfe, 1996) may have
existed between Tarim and Australia (Li and Powell, 2001).
The geological arguments for such a configuration are: (1) the
presence of late Mesoproterozoic-earliest Neoproterozoic active
margins along both the present northwestern and southern mar-
gin of this Archaean–Paleoproterozoic craton (Zhang et al.,
2003; Lu et al., 2008a) suggests that it did not join Australia until
the beginning of the Neoproterozoic; (2) 820–750 Ma bimodal
(plume-induced?) intrusions in Tarim (Chen et al., 2004; Guo et
al., 2005; C.L. Zhang et al., 2006; Lu et al., 2008b) can be corre-
lated with the ca. 820–800 Ma lamprophyre dykes and kimberlite
pipes in the Kimberley craton of western Australia (Pidgeon et
al., 1989), and the 755 Ma Mundine Well dyke swarm in the
northwestern Pilbara craton (Wingate and Giddings, 2000) and
A-type granitic magmatism in the Leeuwin Block of southwest-
ern Australia (Collins, 2003). A noticeable difference is the
lack of ≤750 Ma rift magmatism in western Australia, which
is present in Tarim (Xu et al., 2005; Z.X. Li et al., unpub-
lished data). This could be due to the rift margin being farther
off shore in Australia, or to it being totally reworked by the
Pinjarra Orogeny (Fitzsimons, 2003); (3) both the Kimberley
region of northwestern Australia and Tarim had up to three
Neoproterozoic glacial intervals, although precise ages of the
glacial events and their lateral correlations are still debated
(Li et al., 1996; Grey and Corkeron, 1998; Xiao et al., 2004);
(4) Cambrian mafic volcanic units in northeastern Tarim may
correlate with the Antrim Plateau Volcanics in the Kimberley
(Li et al., 1996), which have been interpreted as part of the
513 Ma Kalkarindji Large Igneous Province in central and north-
ern Australia (Hanley and Wingate, 2000; Glass and Phillips,
2006).

Two Neoproterozoic palaeomagnetic poles have recently
been reported from the Tarim craton: one from ca. 800 Ma mafic
dykes (Chen et al., 2004), and the other from a ca. 750–730 Ma
volcanic unit (Huang et al., 2005). The ca. 800 Ma pole puts
Tarim at a palaeolatitude comparable to the position as in the
Rodinia Map, although the relative orientation is somewhat dif-
ferent. The younger pole places Tarim at a significantly lower
palaeolatitude than that adopted in the Rodinia Map. As no fold
test has been reported for either of the two poles, and both study
regions are inside younger fold-and-thrust belts, we cannot rule
out vertical-axis rotation which can only be identified through
comparative study of similar-age rocks in other parts of Tarim.

2.6. North China

Based mainly on tectonostratigraphic correlations, Li et al.
(1996) suggested that the North China craton was adjacent to
Siberia in Rodinia. The connection may have started as early
as ca. 1800 Ma, and did not break-up until after ca. 600 Ma.
Reliable palaeomagnetic data at both ca. 1770 Ma (Halls et al.,
2000) and ca. 1350 Ma (Wu et al., 2005) from North China lend
support to such a configuration (Fig. 7b). However, data from
younger Proterozoic rocks suggest a slightly different configura-
tion, involving a ca. 90◦ vertical-axis rotation of the North China
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Fig. 7. Position of the North China craton (a) in Rodinia (after Zhang et al., 2006), and (b) during Paleo- to Mesoproterozoic (after Wu et al., 2005). Note that
palaeomagnetic data in (b) suggest that Laurentia, Siberia, Baltica and North China could have been together for the ca. 1800–1300 Ma interval (Wu et al., 2005).

craton in relation to Laurentia between ca. 1350 Ma and 1200 Ma
(S. Zhang et al., 2006) (Fig. 7a). According to S. Zhang et al.
(2006), North China and Laurentia could have shared a common
path between ca. 1200 Ma and ca. 700 Ma, but split up by ca.
615 Ma. It is unclear whether it was Siberia or other continental
blocks that filled the gap between the two cratons for either the
1800–1350 Ma or the 1200–700 Ma intervals. We have adopted
the rotation parameters for the North China craton provided by
S. Zhang et al. (2006) for the Rodinia Map (Figs. 7a and 8).
The lack of Neoproterozoic plume record in North China (e.g.,
Lu et al., 2008b) is consistent with it being at distances from
continents like Australia and South China in Rodinia.

2.7. Minor terranes

The fragmented nature of many minor continental terranes,
as well as their usual lack of any palaeomagnetic constraint,
made it more difficult to place these terranes in Rodinia with
much confidence. However, it is important to consider these
terranes because they could account for spaces and geological
links between larger cratons in Rodinia.

Keppie and Ramos (1999) proposed that two Central Amer-
ican terranes – Oaxaquia (Mexico) and Chortis (Honduras
and Guatemala) – were situated along the northern boundary
of South America in their reconstruction for the Ediacaran
(Vendian)–Cambrian boundary. Keppie and Ortega-Gutierrez
(1999) suggested that these blocks originated as arcs in a
Grenvillian ocean between Laurentia, Baltica, and Amazonia,
and were caught in-between the colliding cratons. These blocks
experienced high grade, collisional-style metamorphism dur-
ing their terminal collisions among Amazonia, Laurentia, and
Baltica by ca. 1000 Ma. We place the Oaxaquia and Chortis
blocks along the northern margin of Amazonia, within the zone

of its collision with Baltica at ca.1000 Ma. Our model is also
constrained by palaeomagnetic data from Oaxaquia (Ballard et
al., 1989).

The space between Siberia and Laurentia in Rodinia is filled
with several continental blocks that rifted away from northern
Laurentia during the Cretaceous opening of the Canadian
basin. These include terranes in northern Alaska, northern
Chukchi Peninsula, Wrangel Island, the New Siberian Islands,
Severnaya Zemlya, northern Taimyr and the Chukchi Plateau
(e.g., Zonenshain et al., 1990; Vernikovsky, 1997; Bogdanov
et al., 1998; Embry, 1998; Nokleberg et al., 2000; Vernikovsky
and Vernikovskaya, 2001; Natal’in, 2004; Drachev, 2004). Our
poor knowledge of these terranes makes geological correlation
between northern Laurentia and Siberia more difficult. The
position of the Kara Plate (exposed on Severnaya Zemlya in
northern Taimyr) is debatable (Metelkin et al., 2005b). Although
detrital zircon grains from the base of the Kara stratigraphy
indicate a Baltican affinity (Pease et al., 2005, 2006), there
are some geological arguments for a north Laurentian affinity
(Zonenshain et al., 1990; Natal’in et al., 1999). Exact positions
of these minor blocks in Rodinia are unclear due to the lack of
palaeomagnetic data.

Previous reconstructions placed the Barentsia plate (exposed
in Eastern Svalbard) against the southern part of east Greenland
using their similarities in Neoproterozoic sedimentary succes-
sions (e.g., Winchester, 1988; Fairchild and Hambrey, 1995;
Harland, 1997; Andresen, 2004). However, we choose to place
it close to the northern part of East Greenland after Gee and
Teben’kov (2004) who correlated the geochronological, struc-
tural, and stratigraphical data of Svalbard to northern Greenland.
We have also reduced the size of the Barentsia plate in accor-
dance with the recent discovery of a Caledonian arm in the
Barents Sea (Breivik et al.,2002).
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Fig. 8. A simplified (and reduced) Rodinia Map with legends.

3. Synthesis and animation: assembly and break-up of
Rodinia, and formation of Gondwanaland

Through a series of cartoons, we illustrate a feasible sce-
nario for the formation of Rodinia as shown in Fig. 8 and
Appendix I, its break-up, and the eventual formation of Gond-
wanaland by the Early Cambrian. The rotation parameters for
the major continental blocks are given in Appendix III, available
online. A digital animation of the palaeogeographic evolu-
tion between 1100 Ma and 530 Ma, with geological features
shown for selected time windows, is also given (Appendix
II). We recognise that this is just one of a number of fea-
sible scenarios for the evolution of Rodinia, and there are
time intervals in the animation (e.g., the ca. 1000–820 Ma
interval) for which we have very little palaeomagnetic
constraints. Such reconstructions emphasise potential geody-

namic linkages and provide a testable hypothesis predicting
continental positions and plate interactions, and enable palaeo-
climatic modellers to simulate continent-ocean-atmosphere
interactions.

3.1. The formation of Rodinia (ca. 1100–900 Ma)

At 1100 Ma (Fig. 9a), Laurentia, Siberia, North China,
Cathaysia (part of present day South China) and perhaps Rio de
la Plata were already together, and the Yangtze craton had begun
its oblique collision with Laurentia (at southern Cathaysia;
Greentree et al., 2006). However, all other continental blocks
were still separated from Laurentia by oceans. The Australian
craton, including the East Antarctica part of the Mawson craton,
had amalgamated by then. King Island, where a 1287 ± 18 Ma
metamorphic age was recently reported (Berry et al., 2005), Tas-
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mania, and the South Tasman Rise (1119 ± 9 Ma quartz syenite,
Fioretti et al., 2005), could have been close to where Yangtze
and Laurentia were colliding, thus receiving Laurentia-sourced
sediments (Berry et al., 2001).

By ca. 1050 Ma (Fig. 9b), Kalahari had probably
collided with southern Laurentia (see Section 2.3). Con-
tinued collision of the Yangtze craton with western
Laurentia may have caused the 1090–1030 Ma metamor-

Fig. 9. Cartoons showing the assembly and break-up of Rodinia, and the formation of Gondwanaland. (a) 1100 Ma; (b) 1050 Ma; (c) 1000 Ma; (d) 900 Ma; (e)
825 Ma; (f) 780 Ma; (g) 750 Ma; (h) 720 Ma; (i) 630 Ma; (j) 600 Ma; (k) 550 Ma; (l) 530 Ma.
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Fig. 9. (Continued )

phism of the mafic sills in the Belt-Purcell Supergroup
(Anderson and Davis, 1995). Convergent margins were
developed between most continents, as the oceanic litho-
sphere between them was consumed during the assembly of
Rodinia.

At ca. 1000 Ma (Fig. 9c), all but India, Australia–East Antarc-
tica and Tarim had assembled to be joined with Laurentia,
whereas the Yangtze craton was still suturing to Cathaysia (part
of Laurentia). The transpressional movement between Greater
India and Western Australia may explain the 1100–1000 Ma
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Fig. 9. (Continued )

metamorphic ages reported from the Pinjarra Orogen (Bruguier
et al., 1999; Fitzsimons, 2003).

By ca. 900 Ma all major known continental blocks had aggre-
gated to form the Rodinia supercontinent (Figs. 8 and 9d, and
Appendix I). Evidence for ca. 900 Ma orogenic events include

the ca. 920–880 Ma arc volcanics and ophiolite obduction in
the eastern Sibao Orogen of South China (Li et al., 2005),
950–900 Ma arc volcanics along the northern margin of the
Yangtze craton (Ling et al., 2003), and the 990–900 Ma high-
grade metamorphic events in both the Eastern Ghats Belt of India
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Fig. 9. (Continued ).

and the corresponding Rayner Province in East Antarctica (e.g.,
Mezger and Cosca, 1999; Boger et al., 2000; Fitzsimons, 2000;
Kelly et al., 2002). This may also be the time when the Tarim
craton joined Australia, as indicated by the development of the
Aksu blueschist which predates ca. 800 Ma mafic dyke intru-

sions and have 40Ar–39Ar cooling ages of 872–862 Ma (Zhang
L.F., unpublished data, as quoted in Chen et al., 2004).

Stresses induced by the ca. 900 Ma event probably caused
reactivation of older orogens within Rodinia. In the Mackenzie
Mountains region of northwestern Laurentia, there is evidence
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for an east-west compressional event (the Corn Creek Orogeny)
sometime between 1033 Ma and 750 Ma (Thorkelson, 2000;
Thorkelson et al., 2005). In the southern Capricorn Orogen
inside the West Australian craton, the Edmundian Orogeny
continued until ca. 900 Ma as shown by 40Ar–39Ar ages (e.g.,
Occhipinti and Reddy, 2005). In the King Leopold Orogen of
the North Australian craton, there was also the Yampi orogenic
event (Tyler et al., 1998; Tyler and Griffin, 1990) with a possible
40Ar–39Ar age of ca. 900 Ma (Bodorkos and Reddy, 2005).

3.2. Superplume events, continental rifting, and the
prolonged break-up process of Rodinia (ca. 860–570 Ma)

Palaeomagnetic constraints for the time interval between
900 Ma and 830 Ma are very poor. Little geological record is
available within Rodinia from this time interval, apart from a
small number of 870–850 Ma intrusions such as those in South
China and Africa (X.H. Li et al., 2003b; Johnson et al., 2005). Ca.
845 Ma and 870 Ma bimodal intrusions have also been reported
from the Scandinavian Caledonides (Paulsson and Andreasson,
2002) and the Scottish promontory of Laurentia (Dalziel and
Soper, 2001), both interpreted as representing the beginning of
Rodinia break-up. Z.X. Li et al. (2003b) suggested that these
intrusions could have been the first sign of a Rodinia superplume,
i.e. local anatectic melts due to enhanced thermal gradients
above ascending plume-heads.

Widespread plume activity did not occur until ca.
825 Ma, as shown by mafic dyke swarms, intra-continental
mafic–ultramafic intrusions, and felsic intrusions (resulting from
crustal melt or magma differentiation). However, such magma-
tism is commonly found in the polar end of Rodinia only (Li et
al., 2004), including Australia (Zhao et al., 1994; Wingate et al.,
1998), South China (Li et al., 1999; X.H. Li et al., 2003a; Z.X. Li
et al., 2003b), Tarim (Zhang et al., 2006), India (Radhakrishna
and Mathew, 1996), Kalahari (Frimmel et al., 2001), and the
Arabian–Nubian terranes (Stein and Goldstein, 1996; Teklay et
al., 2002). In places these intrusive rocks are unconformably
overlain by similar-aged rift-related volcaniclastic successions,
suggesting syn-magmatic doming (e.g., Li et al., 1999). Li et al.
(1999) and Z.X. Li et al. (2003b) interpreted this widespread,
largely synchronous magmatic event as the first major episode
of superplume events which eventually led to the break-up of
Rodinia (Fig. 9e). They regard the globally common sedimen-
tary hiatus between ca. 900–880 Ma and 820 Ma as partly due
to plume-induced crustal unroofing.

Away from the suggested polar superplume, similar-aged
gabbro and monzonite intrusions are reported from the Scan-
dinavian Caledonides, which are interpreted as indicative of
continental rifting (Reginiussen et al., 1995). However, it is
unclear whether this event was related to the high-latitude super-
plume event as no such rocks have been reported in-between the
two regions. Nonetheless, such a connection would be possible
given the mechanism for the generation of the superplume (see
discussions below).

We illustrate the possible formation and tomography of a
superplume (Fig. 10). Although thermal insulation of a super-
continent may elevate the temperature of the upper mantle (e.g.,

Anderson, 1982; Gurnis, 1988), Li et al. (2004) suggested that
the dominant driving force for the generation of mantle super-
plumes (or superswells) is the double (circum-Rodinia) push-up
effects of mantle avalanches (e.g., Kellogg et al., 1999; Moores
et al., 2000; Fig. 10). Such avalanches could occur once oceanic
slabs subducting below margins of the supercontinent become
too dense to be supported at the mantle transitional zone (e.g.,
Tackley et al., 1993). On the surface the superplume would
appear as a “plume cluster” (Ernst and Buchan, 2002; Schubert
et al., 2004) consisting of “secondary” plumes originating above
the top of the superplume (Courtillot et al., 2003).

Such a mechanism would explain the bipolar nature of super-
plume occurrences, as illustrated by the present-day Africa and
Pacific superplumes (e.g., Zhao, 2001; Courtillot et al., 2003),
which are likely the residuals of the Pangaean superplume (e.g.,
Anderson, 1982; Burke and Torsvik, 2004) and the Palaeo-
Pacific superplume (e.g., Larson, 1991a). The model would thus
predict the occurrence of numerous oceanic plateaux and sea-
mounts in the oceans on the opposite side of the Earth from
Rodinia, traces of which would be found in the “Pan-African”-
age orogens (e.g., parts of the Arabian–Nubian Shield; Stein
and Goldstein, 1996). This model agrees with that of Condie
(1998, 2000) in as much as superplumes are results of slab
avalanches. It differs from the Condie (1998, 2000) model in
that the superplume events in our model occurred after the for-
mation of the supercontinent, not during the formation of the
supercontinent. In our model the superplume events eventually
led to the break-up of the supercontinent.

The ca. 825 Ma superplume event, followed by continental
rifting, lingered on for ca. 25 million years, with another weaker
magmatic peak occurring at ca. 800 Ma (Z.X. Li et al., 2003b;
Ernst et al., 2008).

There appears to have been a global hiatus in plume/rift mag-
matism at around 790 ± 5 Ma (Z.X. Li et al., 2003b), but another
superplume breakout occurred at ca. 780 Ma, with the best exam-
ples being the Gunbarrel event in Western Laurentia (Harlan et
al., 2003b) and the Kangding event in South China (Z.X. Li et al.,
2003b; Lin et al., 2007). By that time Rodinia had moved away
from the northern polar region (Fig. 9f). India may have already
rifted away from Rodinia if we accept that the palaeomagnetic
pole from the Malani igneous suite (Torsvik et al., 2001b) is reli-
able and applicable for the entire 770–750 Ma interval, although
no record of continental rifting and break-up has been reported
for that time interval. The rapid rotation of Rodinia between
ca. 820–800 Ma and ca. 780–750 Ma is interpreted by Li et al.
(2004) as a true polar wander (TPW) event related to the occur-
rence of a high-latitude superplume (Evans, 1998, 2003b; Z.X.
Li et al., 2003b). It is interesting to note that the rotation axis for
the suggested TPW event is just east of Greenland (Li et al., 2004,
Fig. 5), close to the Scandinavian Caledonides and the Scottish
promontory of Laurentia where ca. 845 Ma and 870 Ma bimodal
intrusions are present and are interpreted to represent the begin-
ning of Rodinia break-up (Dalziel and Soper, 2001; Paulsson and
Andreasson, 2002). Perhaps these magmatic events indicate the
arrival of a plume-head which acted as the equatorial minimum-
inertial axis for multiple TPW event(s) (Evans, 2003b; Li et al.,
2004; Maloof et al.,2006).
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Fig. 10. A cartoon showing the formation of a mantle “superplume” beneath supercontinent Rodinia (inspired by Kellogg et al. (1999) and Moores et al. (2000)).

Our proposed mechanism for the formation of the Rodinia
superplume (i.e. due to mantle avalanches surrounding the super-
continent, possibly enhanced by the thermal insulation effect of
the supercontinent; Fig. 10), and the palaeomagnetic implication
that both the superplume and Rodinia above it may have moved
from a high-latitude position to an equatorial position between
ca. 820–800 Ma and ca. 780–750 Ma (Li et al., 2004), imply that
whole-mantle convection is primarily driven by subduction pro-
cesses (a kind of “top-down tectonics”, but differs from that of
Anderson (2001) and others (e.g., Foulger et al., 2005) in that
we have whole-mantle convection here), not by stationary heat
sources at the core–mantle boundary.

By ca. 750 Ma (Fig. 9g), the western half of Rodinia may
have started to break apart above an equatorial superplume.
Bimodal magmatism at ca. 755–750 Ma was the last such major
event seen across Rodinia (or a breaking-apart Rodinia). Like
the ca. 825 Ma episode, syn-magmatic continental unroofing,
documented by erosional contacts between ca. 770–750 Ma
intrusive rocks and ca. 750–740 Ma rift successions, are
common features (e.g., in western Kalahari, South China, and
western and southeastern margins of Laurentia; see Z.X. Li
et al., 2003b and references therein). By ca. 720 Ma (Fig. 9h),
Australia–East Antarctica and South China are probably
separated from each other by wide oceans. Even Kalahari and
Siberia may have started to break away from Laurentia by this
time. The ca. 750–700 Ma interval is also when the first major
global Sturtian glaciation occurred and when most continents

were located at low- to moderate-latitude positions (the first
snowball-Earth? Kirschvink, 1992; Hoffman et al., 1998).
At ca. 650–630 Ma, when the dispersing continental blocks
became even further aligned along the palaeo-equator (Fig. 9i),
the second widespread low-latitude glaciation (the Marinoan
glaciation, and another snowball-Earth event? Hoffman and
Schrag, 2002) occurred. Numerous potential causes for these
enigmatic global climatic events have been proposed and all
are highly controversial. We refer readers to a dedicated web
site (http://snowballearth.org) on current understanding of the
subject, and the bibliography listed therein.

By ca. 600 Ma, the Amazonia, West Africa and Congo-São
Francisco cratons had largely come together during the Brasil-
iano Orogeny (e.g., Trompette, 1997) (but note the alternative
suggestion of Trindade et al., 2006 that these did not collide
until Cambrian times by a Pampean-Araguaia orogeny), while
Amazonia and Rio de la Plata were probably still attached to
Laurentia (Fig. 9j). Siberia (Pisarevsky et al., 2008), North China
(Zhang et al., 2006) and Baltica (Cawood and Pisarevsky, 2006;
Pease et al., 2005, 2006) were separated from Laurentia by ca.
600 Ma. However, equivocal 580–560 Ma palaeomagnetic data
put Laurentia at either a high-latitude position, or a low-latitude
position (Cawood and Pisarevsky, 2006 and references therein).
In our model we show the high-latitude option as the main figure,
but have the low-latitude alternative shown as an insert (Fig. 9j).
The high-latitude option makes it easier to explain the ca.
580 Ma Gaskiers glaciation in Baltica (e.g., Meert and van der
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Voo, 1994), but this does not apply to the likely post-Marinoan
glaciation in Tarim (Xiao et al., 2004) which lacks precise
palaeomagnetic constraints. Amazonia was likely separated
from Laurentia by ca. 570 Ma (e.g., Cawood and Pisarevsky,
2006 and references therein). The rifting away of continental
blocks (e.g., Siberia, Kalahari, Rio de la Plata, Amazonia and
Baltica) from Laurentia between ca. 630 Ma and 550 Ma may
have been responsible for the widespread subsidence recorded
at the margins of many of these cratons (e.g., Bond et al.,
1984).

3.3. The birth of Gondwanaland (600–530 Ma)

Hoffman (1991) first suggested that the break-up of the
Rodinia supercontinent involved fragmentation around Lauren-
tia with continental pieces moving away from Laurentia and
colliding on the other side of the Earth to form Gondwanaland.
As mentioned in Section 3.2, with the exception of Kalahari
and perhaps some minor terranes, West Gondwana was largely
together by ca. 600 Ma. However, oceans still existed between
Australia–East Antarctica, India, eastern Africa and Kalahari at
that time (e.g., Meert, 2003; Jacobs and Thomas, 2004; Collins
and Pisarevsky, 2005). By ca. 550 Ma (Fig. 9k), India had moved
closer to its Gondwanaland position along the western margin
of Australia, as recorded by the sinistral strike–slip movement
along the Pinjarra Orogen (Fitzsimons, 2003). Kalahari started
to collide with Congo and Rio de la Plata, thus closing the Neo-
proterozoic Adamastor Ocean between them (e.g., Prave, 1996).
North China, separating from Laurentia–Siberia after ca. 650 Ma
(S. Zhang et al., 2006), was drifting across the palaeo-Pacific
Ocean toward Australia at that time.

Gondwanaland finally amalgamated by ca. 540–530 Ma
(Fig. 9l) through the closure of both the so-called “Mozam-
bique Ocean”, causing the Malagasy Orogeny in the East
African Orogen (Meert, 2003; Jacobs and Thomas, 2004;
Collins and Pisarevsky, 2005), and the final docking of
India to Australia–East Antarctica along the Pinjarra Oro-
gen (Fitzsimons, 2003; Boger and Miller, 2004; Collins and
Pisarevsky, 2005; also known as the Kuunga Orogen, Meert and
Van der Voo, 1996; Meert, 2003). The formation of Gondwana-
land by ca. 530 Ma is supported by palaeomagnetic analyses
(e.g., Meert and Van der Voo, 1996; Li and Powell, 2001). Both
the South China and North China blocks were located close to
Australia, as indicated by episodic bioprovince connections with
east Gondwana during the Early to mid-Palaeozoic (e.g., Burrett
and Richardson, 1980).

4. Concluding remarks

The late Mesoproterozoic and Neoproterozoic period is one
of the most remarkable time intervals in Earth’s history. During
this time we see the assembly and break-up of the superconti-
nent Rodinia that was ancestral to the long-lived supercontinent
of Gondwanaland, possible global superplume events and rapid
true polar wander event(s), repeated low-latitude glaciations,
and finally the explosion of multicellular life (McMenamin and
McMenamin, 1990) and the emergence of a plate dynamic and

climatic system very similar to what we have today (Moores,
2002; Evans, 2003a). The occurrence of some of these events,
and possible genetic links between them, are still highly con-
troversial. Nonetheless, these conceptual ideas enable us to
think beyond the Phanerozoic “comfort zone” that persisted
until recently. They have also forced geoscientists to think
beyond their specific disciplines, bringing together tectonicists,
structural geologists, geochemists, stratigraphers, petrologists,
geophysicists, climatologists, and palaeontologists alike to work
together toward a better understanding of Earth system science at
the dawn of the Phanerozoic. With this background in mind, we
present this overview of the formation and break-up of Rodinia.
The scenarios presented here are not necessarily correct and
there are many other scenarios which may explain some of the
observations as well. It nonetheless provides a basis for future
research on related topics.

Rodinia and Pangaea are the two supercontinents that we
know to have included almost all the continents on Earth. Despite
the secular nature of Earth’s evolution (and thus its tectonic pro-
cesses), there are remarkable similarities between them: (1) They
both had a lifespan of ca. 150 Ma: ca. 900 Ma to ≥750 Ma for
Rodinia (this work), and ca. 320 Ma to 180–160 Ma for Pangaea
(e.g., Li and Powell, 2001; Veevers, 2004); (2) The break-up of
both supercontinents started with broad mantle upwellings (or
superplumes) beneath them, resulting in widespread bimodal
magmatism (including plume magmatism) and continental rift-
ing (see Section 3.2); (3) The formation and break-up of Pangea
also coincided with the occurrence of geomagnetic superchrons
(Larson, 1991b; Eide and Torsvik, 1996), although there are
still inadequate data for assessing the presence of similar events
during the history of Rodinia. The Rodinia and Pangea super-
continental episodes thus provide us rare opportunities to gain
insights into the 4D geodynamic system featuring close interac-
tions between the thermal dynamics of the Earth’s outer core,
mantle convections, and lithospheric plate tectonics.
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