Glaciolacustrine and
glaciomarine sedlments

Glaciomarine sediments — Englishman River
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Lake Missoula flood
sediments near to
Walla Walla
Washington
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From Murton et al., Nature 464, 2010
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Modes of glaciolacustrine deposition

Direct deposition from the glacier (waterlain
diamict)

Deposition from meltwater inflows (deltas fans)
Settling from suspension (varve couplets)
Rain-out from icebergs (dropstones and diamicts)
Resedimentation by gravity flows

Current reworking

Shoreline sedimentation

Biological sedimentation



Waterlain diamict




Waterlain diamicts

Bennett and Glasser, 2009



Water depth

Stratification of Lakes in Glacial areas
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Dispersal of cold and warm inflowing water
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If the inflowing water is colder

If the inflowing water is warmer
and denser than the lake water it than the lake water, the inflow
will sink quickly to the bottom, will stay near to surface and can
and is unlikely to contribute to contribute to a delta

delta growth. Instead it might
form a lake-bottom fan.
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Settling from suspension

* |[nput of water, and therefore sediment, is
likely to be highly seasonal (almost none in
winter),

* Varve couplets are common in glaciolacustrine
sediments (a thin fine layer from settling of
clay-sized material in winter, and a thicker
coarser layer from silt and sand input during
summer)



Permo-Carboniferous
Dwyka Formation from
South Africa

Varved couplets with

small dropstones
(Visser et al., 1984, J. Sed. Pet.)
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Glacial Lake
Thompson
during decay of
the Fraser Ice

sheet
(ca. 13 to 10 ka)

8%, Sedmentary section with avera
\ paaeoflow direction 2
~== Shoreline: Glacial Lake Thompson
- High stage
Shoreline: Glacial Lake Deadman
- Lowest stage

D Ice dam

€D Delta
§/ Subaqueous fan
== Drumlins
@y’ 1000 - 2000 m elevation (map C)
‘ 2000+ m elevation (map C)

Johnsen, T and
Brennand, T, 2006,
The environment in
and around ice-
dammed lakes in the
moderately high relief
setting of the
southern Canadian
Cordillera, Boreas, V.
35, p. 106
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Delta deposits
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Delta topset and foreset beds. (Topset-foreset contact indicated by dashed line.) B. Close-up
of foresets showing inclined, alternating imbricate gravel and plane-bedded sand lithofacies.
Person (circle) for scale.
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Alluvial fan containing tephra
{likely Mazama)
Lacustrine Facles

{Table 1): Holocene terrace gravels
Sra, 56 |3 | % High energy lake bottom sediments -
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21, 5dg,
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Hyperpycnal flow dominated
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After Johnsen and Brennand, 2006
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Glaciomarine deposits

Modes of glaciomarine deposition

* Direct deposition from the glacier (waterlain diamict)
* Deposition from meltwater inflows (deltas fans)

e Settling from suspension (varved couplets)

e Rain-out from icebergs (dropstones and diamicts)

* Resedimentation from gravity flows

* |ceberg reworking
* Biological sedimentation and trace fossils
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Significance of saltwater density

A: Low discharge
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Typical sea-water has
about 0.35% salt and
a density of about
1030 g/L. Incoming
fresh water is
typically much less
dense and will rise to
the surface taking at
least the fine
material with it.
Incoming water must
have at least 30 g of
sediment/L in order
to be more dense
than seawater.

From Bennett & Glasser, 2009



S. Shetland Islands (W. Antarctica)
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Distinguishing glaciomarine diamicts from tills



Iceberg scars off Hudson river, New Jersey (1) parallel scours, which must have been created by a
double-keeled object; (2) cross cutting scours where one clearly post-dates the other; (3)
wide scours with bermed edges, indicating material pushed to the side during gouging; (4) a long,
sinuous scour that starts and stops at almost identical depths, indicating a keel of constant depth; and
(5) scours that deepen upslope, indicating a grounded object. (From Goff et al., 1999)
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