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Sand-rich sub-marine fan
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Gravel-rich sub-marine fan
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Modern Submarine Fans

Covault, J. A. (2011) Submarine Fans and Canyon-Channel Systems: A Review

of Processes, Products, and Models. Nature Education Knowledge 2(12):4
http://www.nature.com/scitable/knowledge/library/submarine-fans-and-canyon-channel-systems-a-24178428
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a Modern fan model b Ancient fan model
Normark (1970)

Mutti and Ricci Lucchi (1972)
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Christian Hiibscher, Volkhard
Spiel, Monika Breitzke ,
Michael E. Weber

The youngest channel-levee
system of the Bengal Fan:
results from digital sediment
echosounder data

Marine Geology 141 (1997)
125-145

iy iz J
F¥ =) Y
X " ﬂ?i‘ s _:
P Ve
Fig. 1. Map of the Bengal Fan with S0 93 cruise track. Parasounn data have been obtained along the entire cruise track. The inset 700 MILES

map shows correlated channels (redrawn from Emmel and Curray, [1985). The active channel is marked by the thicker black line. 0 1000 KILOMETERS
B=Bangladesh, GBE= Ganges—Brahmaputra Estuary.
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Fig. 2. ParasoUND section of the Swatch of No Ground. For location, refer to Fig. |. The data gap at the eastern flank of the canyon is caused by the steep slope angle,
Channels are incised into the bottom of the canyon. VE = vertical exaggeration.
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Fig 3. (A) PArasounD section of the youngest channel-levee system in the middle fan at 16730N with Hyprosweep data. (B) Interpreted section, For location, refer
to Fig. 1. ltalic number refers to swath width. Piston cores 117-120 KL are marked with arrows, The locations of 119-120 KL are projected onto the levees. which
have been collected outside the profile. See text for discussion. ¢CLS=abandoned channel-levee system. —di use laver. ich=intra-channel highs. VE=vertical
exaggeration,
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Fig. 4. PARASOUND section and Hyproswip data of the youngest channel-fevee system in the lower fan at 13 30N, For location, refer to Fig. |. Italic number refers
to swath width. The westernmost of the two observed channels represents the recent channel; ¢f =chaotic layer, s/=slump. FE=vertical exaggeration.
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Fig. 6. PARASOUND section with HyproswEsP data of the youngest channel-levee system in the lower fan at 5°30N. For location, refer to Fig. 1. Italic number refers to
swath width. The interpreted base of the levees is marked by arrows. The channel has been constricted by the deposition of sediment at the inner levee flank; lar =low
amplitude reflections, i/ =inner levees, VE= vertical exaggeration.
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Fig. 7. {A) PArasOUND section of the youngest chuanel -levee system in the lower fan at 4 30N, (B) line drawing. For location, refer 1o Fig. 1. The
separated into two vertical units. The lower unit generally exhibits & di  use reflection pattern with some divergent reflections onlapping at the convex shaped base.

Distinct dipping reflections of the outer sidz of the upper unit terminate as a downlap on to the surface which separates the two units. The maximum reflection
amplitudes arc plotted 4t the top: VE=vertical exaggeration.

entire system is



/ﬁTumfdny Current

s RN
s N N
<= -

Erosional Valley

— :‘_—'_"_..""‘ —_—
S %, -~
= \/ces — ~—— D
Ih"'---.__,d--""

c)

Fig. 10. Allocyelic model of the evolution of a channel-levee
system in the lower fan. (A) Phase I: erosion of an elongated
valley (Clark and Pickering, 1996). (B) Phase 1l: relatively
coarse-grained sediments (CGS) are deposited within the valley
and a narrow channel emerges near the centre. (C) Phase III:
depositional process changes from valley-filling to overbanking.
(D) Phase IV: decrease in sediment input leads to channel con-
striction, when inner levees develop. CGS =coarse-grained
sediments.



Prothero and Schwab, 2004
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Submarine Fan Facies

Facies A Thick to massive, channeled and
sz amalgamated, poorly sorted coarse shelf
% s and Cgl, with thin or no mud Massive or stratified mudstone (facies
- intervals: all pradations to facies E C); discordant surfaces and facies F
 all B
. , ’ . Slope deposits from mass movements; lag
Facies B Th'ck to n!ﬁlafl,swe, !?thylarlsurfed 58 " deposits of sediment gravity flow;
cmg] with parallel to undulating laminae, facies A in channels, locally succeeded
“ commaon mud clasts, and erosional .
bases; thin mud intervals by facles &
ases;
facies C Couplets of even, parallel-bedded 1Irnner Facies G mudstones enclosing thick,
——== M-F S5 and mincr homogeneous : an h"”adl channel-filling facies A, B, and
s muds; Ss may show complete Bouma F; facies E may be present
succession, some broad, shallow
channels; comman sole marks
Facies D Couplets of parallel-bedded,
= laterally continuous F-VF 5s/Siltst. Essentially facies D : i
=== | and thicker muds. 5s with regular ssentially facies D and E; subordinate

facies C; local intercalations of
lenticular facies A, B, and F; typically
showing thinning-and fining-upward
sandy cycles; paleocurrents show
dispersion of about 90°

to convolute to ripple-drift
laminations. Bouma base cutout
SeqUENCEs Comman

facies E Thinner, irregular and

discontinuous beds of slightly

E=|  coarser Ss and Silst. than D; also
thinner muds. Ss with basal graded
and structureless intervals; sharp
upper contacts with mud

I

Facies D sediments with lenticular
facies C; typically showing thickening-
and-coarsening-upward sandy cycles;
coarser deposits usually not
channelized; paleocurrents spread
over 907, transverse or longitudinal to

——— Thick intervals of mildly deformed S fan
chaotic deposits derived from sliding .

or mass flow basin axis
Basin Facies D, with thin intervals of facies
Facies G plain T G mudstone sometimes detectable;
a i I
Thick muds with often obscure continuous paleacurrents parallel to basin axis
parallel bedding

Prothero and Schwab, 2004
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Bouma Sequences

Grain
size

Bouma units

Sand

Laminated mud

Laminated silt and mud
Ripples, wavy
lamination, or
convoluted laminae
Plane-parallel

laminae

Massive and
graded

(to granule at base)

Prothero and Schwab, 2004

Interpretation

Pelagic sedimentation
or fine-grained,
low-density turbidity
current deposition

Lowest -flow -velocity
plane beds

Lower-flow-velocity
ripples

High-flow-velocity
plane bed

High flow velocity and
rapid deposition

— Commonly scours into previous layer






Not all Bouma layers are likely to
be visible in any one place.
The notation for turbidite layers is
as follows:

Tabcde: all present
Tacd: only a, c and d present

Te: only e present
etc.
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