GEOG 226

Optional Lab
Answer the following questions in a neat and organized fashion. Show all calculations and be sure to include units. Neatness will be a consideration in marking (actually, if it isn't neat and easy to follow it will get a zero).

Coordinates

1. Refer to the $92 \mathrm{G} / 7$ (Port Coquitalm) NAD 27 map that was attached to your Map Coordinates Lab. For the lab you determined the UTM and lat/long coordinates for spot height 471. For this lab
a. determine the UTM coordinates (nearest metre) for the point where Gurney Creek enters Pitt Lake
b. determine the lat/long coordinates (nearest second) for the point where Gurney Creek enters Pitt Lake

Map Scale

1. Express the following as a ratio (representative fraction):
a) $1 \mathrm{~cm}=15 \mathrm{~m}$
b) $1 "=200^{\prime}$
c) $1 "=1 / 2 \mathrm{mi}$.
d) $1 \mathrm{~mm}=30 \mathrm{~m}$
2. What is the map length (cm) of 3 km on a $1: 20,000$ map?
3. What is the 'real world distance (m) of 5.55 cm on a $1 "=1 / 2$ mile photo?
4. The distance between two lakes on Map A (scale of $1 "=2,640^{\prime}$) measures 2.55 cm . What would the map measurement be on Map B if it had a scale 1: 50,000 map?
5. The distance between two features on a photo is 11.5 cm and the corresponding distance is 5 km on the ground. What is the approximate scale of the photo?
6. You have a $1: 10,000$ map and a photo (30BCC09222-101) of unknown scale. A lake is visible on both - it measures 6.1 cm on the map and 3.35 cm on the photo.
a. Determine the scale of the photo.
b. What is the flying height (in metres and in feet) for the the photo in the previous question?
c. If the altimeter read 19,500 feet, what is the elevation of the ground?
