3P Sampling

• **3P** = probability proportional to prediction

- probability of a tree chosen for sampling (i.e. measured)
- is proportional
- to its predicted size
- restated
 - the bigger it is ...
 - the more likely it will be sampled

• Basics

- even people with limited experience
 - can estimate size fairly consistently
 - accuracy is NOT important
 - consistency is the KEY!!
- advantage is high precision
 - really it's low variability (CV)
 - typically CV for cruising ~60%
 - for 3P ~20%
 - means fewer plots to get a "good SE"
- overview of field work
 - go to every individual and guess its size
 - compare est. size to a random number (more on this later)
 - if EGER then measure CAREFULLY

• overview of compilation

- sum all est. values
 - but we don't know "how good" our estimates are
 - so we need a correction ratio (R)
 - R = measured value / est. value
 - R then "corrects" our estimate
- Real Total = Est. Total * correction Ratio

- Key Points
 - need to visit each individual (tree)
 - so estimate needs to be QUICK
 - consistency important NOT accuracy
 - due to high precision ... only a FEW samples needed ...
 - ... need to be measured carefully
 - for timber cruising

.

- traditional 3P restricted to
 - small areas or corridors
 - marking cruise (selection cuts)
 - 100% cruise is required
- modified 3P sampling for larger areas
- Example ... BYL
- Planning
 - Some Terms
 - \sum KPI ... is the total of the estimates
 - (K+Z) ... is the maximum random number
 - Create the Random Number Table
 - remember EGER
 - thus the random number table determines when to sample
 - let's talk about chance
 - random numbers 1-100
 - chance of being selected?
 - est. tree size is 20
 - est. tree size is 50
 - likely sample size?
 - 8 trees, each is est. to be 50
 - 8 trees (20, 40, 75, 10, 30, 15, 60, 55)
 - equation for likely sample size is ...
 - $n = \sum KPI / (K+Z)$
 - emphasize it is the LIKELY sample size (n)
 - Calculate (K+Z)

- rearrange $n = \sum KPI / (K+Z) \dots$
- ... $(K+Z) = \sum KPI / n$

• Once again, but in order

- Planning
 - determine sample size
 - est. CV
 - confidence level (95%?)
 - acceptable error (15%?)
 - determine (K+Z)
 - est Σ KPI
 - desired n (from above)
 - generate the random # table
 - calculator (or Excel) to get RAND# (0 1)
 - multiply RAND# by (K+Z)
- Field
 - go to each individual (tree) and est. size
 - if EGER then carefully measure
- Compilation
 - Actual Total = Total of estimates * correction ratio = $\sum KPI * R$
 - Calculate
 - ∑KPI
 - individual R's and ave. R
 - Vol = $\sum KPI * ave R$
 - stats (CV%, SE% & E%) based on individual R's
 - E% * Actual Total = total E in units ... provides confidence interval