3P Sampling

- 3P = probability proportional to prediction
- probability of a tree chosen for sampling (i.e. measured)
- is proportional
- to its predicted size
- restated
- the bigger it is ...
- the more likely it will be sampled
- Basics
- even people with limited experience
- can estimate size fairly consistently
- accuracy is NOT important
- consistency is the KEY!!
- advantage is high precision
- really it's low variability (CV)
- typically CV for cruising $\sim 60 \%$
- for 3P ~20\%
- means fewer plots to get a "good SE"
- overview of field work
- go to every individual and guess its size
- compare est. size to a random number (more on this later)
- if EGER then measure CAREFULLY
- overview of compilation
- sum all est. values
- but we don't know "how good" our estimates are
- so we need a correction ratio (R)
- $R=$ measured value / est. value
- R then "corrects" our estimate
- Real Total = Est. Total * correction Ratio
- Key Points
- need to visit each individual (tree)
- so estimate needs to be QUICK
- consistency important NOT accuracy
- due to high precision ... only a FEW samples needed ...
- ... need to be measured carefully
- for timber cruising
- traditional 3P restricted to
- small areas or corridors
- marking cruise (selection cuts)
- 100% cruise is required
- modified 3P sampling for larger areas
- Example ... BYL

- Planning

- Some Terms
- $\sum \mathrm{KPI} \ldots$ is the total of the estimates
- $(\mathrm{K}+\mathrm{Z}) \ldots$ is the maximum random number
- Create the Random Number Table
- remember EGER
- thus the random number table determines when to sample
- let's talk about chance
- random numbers 1-100
- chance of being selected?
- est. tree size is 20
- est. tree size is 50
- likely sample size?
- 8 trees, each is est. to be 50
- 8 trees $(20,40,75,10,30,15,60,55)$
- equation for likely sample size is ...
- $\mathrm{n}=\sum \mathrm{KPI} /(\mathrm{K}+\mathrm{Z})$
- emphasize it is the LIKELY sample size (n)
- Calculate (K+Z)
- rearrange $\mathrm{n}=\sum \mathrm{KPI} /(\mathrm{K}+\mathrm{Z}) \ldots$
- ... $(\mathrm{K}+\mathrm{Z})=\sum \mathrm{KPI} / \mathrm{n}$

- Once again, but in order

- Planning
- determine sample size
- est. CV
- confidence level (95% ?)
- acceptable error (15\%?)
- determine ($\mathrm{K}+\mathrm{Z}$)
- est $\sum \mathrm{KPI}$
- desired n (from above)
- generate the random \# table
- calculator (or Excel) to get RAND\# (0-1)
- multiply RAND\# by (K+Z)
- Field
- go to each individual (tree) and est. size
- if EGER then carefully measure
- Compilation
- Actual Total $=$ Total of estimates $*$ correction ratio $=\sum \mathrm{KPI} * \mathrm{R}$
- Calculate
- $\quad \sum \mathrm{KPI}$
- individual R's and ave. R
- $\mathrm{Vol}=\sum \mathrm{KPI} *$ ave R
- stats (CV\%, SE\% \& E\%) based on individual R's
- $\mathrm{E} \%$ * Actual Total $=$ total E in units ... provides confidence interval

