FRST121 - Mapping and Photogrammetry
 Fall 2011

Topography and Slope

References: Map use and Analysis, campbell pg. 130141

Instructors:

Author:

Doug Corrin
Jim Wilkinson
B. Beese

Outline

- Three ways to describe slope
> Calculating slope, horizontal and vertical distances
> Creating topographic profiles
$>$ Plotting a constant grade

Topography/ Terrain

It's the shape of the ground
>the vertical and horizontal dimensions of the land surface

- Topography is more commonly used term

Ways to describe terrain

1. Spot Height

2. Bench Mark with Elev. 3. Shading

$\triangle \quad{ }_{187.8} \uparrow$

Shading is visually effective but you can't measure it

Ways to describe terrain

- Contour - imaginary line connecting points of equal elevation
$>$ Max slope is at right angles to a contour
> catchment area?

Applications:

- Elevation estimates - interpolation
$>$ Reservoir Capacity - $\mathrm{V}=\mathrm{i}\left[\mathrm{A}_{1} / 2+\mathrm{A}_{2}+\mathrm{A}_{3} \ldots+\mathrm{A}_{n}\right]$
- Flood Zone Maps -

Forestry

Catchment Basins - Hydrology
Slope Profiles

- Intervisibility (viewpoints)

Harvest Method projections
Road Projections

Review of FRST 111 -Measurement of slope

1. As a Ratio
$>$ Of the rise to the run

- Example: 1 in 20, or 1:20
- Means a rise of 1 m every 20 m

2. As an Angle

- In degrees
- Example: 10°

Maximum is 90° (straight up)
3. As a Percentage

Also called the "grade"
Calculated as the rise/run $\times 100=\%$ 45° is 100% slope

Review of FRST 111 - trig functions

Sine (sin), cosine (cos), tangent (tan)
$\sin A=$ opposite side / hypotenuse $\cos A=$ adjacent side / hypotenuse $\tan A=$ opposite $/$ adjacent $=$ rise $/$ run

Calculate VD and HD given Slope in \% and SD

$\mathrm{HD}=\mathrm{SD}^{*} \cos \mathrm{~A}^{\circ}$

- For slope in \%....then
- $A^{\circ}=\tan ^{-1}$ [slope (decimal, $30 \%=0.30$)]
$V D=S D * \sin A^{\circ}$
For slope in \%....then
$\mathrm{VD}=\mathrm{HD} *$ slope (decimal)

Topographic Profiles

Creating Profiles

1. Determine cross section (cut line)
2. Determine vertical scale (Exaggerated 10X)
3. Use horizontal lines to correspond to elevation ranges
4. Determine horizontal scale

- if same as map, transfer points directly
- if different, calculate difference between contours, then plot

5. Pay attention to $+/-$

Mount St. Helens, WA

BEFORE May 18, 1980 eruption
Elevations, feet above sea level Contour Interval, 400'

AFTER May 18, 1980 eruption
$5,000 \mathrm{ft}$.
Lava dome

Mount St. Helens, Topographic Profile

Mount St. Helens

$5,000 \mathrm{ft}$.

Topographic map after May 18, 1980 eruption

Visual analysis

Determining what will be seen from a particular viewpoint

Plotting a grade

Determine the most direct route without exceeding specified grade
> Figure out the minimum spacing between contours along the road
> Example: 15\% max, 20m contours, 1:5000

- convert slope to rise/run: 15/100m
- equate to contours: 20m/ ? M
- ? = 133m
- convert to map distance $13300 \mathrm{~cm} / 5000=2.7 \mathrm{~cm}$
- Locate points and connect

Plotting a grade - slight variation

Calculate the precise grade between two points:

1. Determine the start and end elevation.
2. Determine the horizontal distance while following the topography
3. Grade = Rise/Run
4. Figure out the minimum spacing between contours along the road
Example: going from 250 m to 300 m in 525 m HD with $20 \mathrm{~m}=\mathrm{CI}$
higher ele.v-lower elev. $=300-250=50 \mathrm{~m}$
40/525 = $9.5 \%=9.5 / 100$
equate to contours: $20 \mathrm{~m} / \mathrm{X}$ m
$X=210 \mathrm{~m}$ (ff you can use your scale go no further)

- convert to map distance
- Locate points and connect

Reading contour maps

$>$ Streams almost always cross contours at a right angle

- Streams, unless on very flat terrain, erode a gulley. This can be seen in the contours by a short bump upstream in the contour.
Colour all your streams, lakes, swamps blue as soon as you get a map to help distinguish from contours
On the moose lake map do you see 2 places where streams are likely?

Calculating an elevation between contours What is the Elevation of * ?

Create a ratio:
If $\mathrm{A}=200 \mathrm{~m} \mathrm{HD}$
and $B=60 \mathrm{mHD}$ and $\mathrm{CI}=25 \mathrm{~m}$
$-60 / 200=X / 25$

$$
\begin{aligned}
& X=7.5 \mathrm{~m} \\
& =7.5+275=282.5 \mathrm{~m}
\end{aligned}
$$

Review

\checkmark Three ways to describe slope are?
$>H D=\cos \left[2^{\text {nd }}\right.$ F] \tan [dec. slope] * SD

- Create topographic profiles by transferring elevations from horizontal to vertical
> Plot a grade using rise/run and topographic map

