#### FRST121 – Mapping and Photogrammetry Fall 2011

# Topography and Slope

References: Map Use and Analysis, Campbell pg. 1.30 -141 Instructors: Author: Doug Corrin Jim Wilkinson B. Beese



### Outline

Three ways to describe slope
Calculating slope, horizontal and vertical distances
Creating topographic profiles
Plotting a constant grade

### Topography/ Terrain

- It's the shape of the ground
  the vertical and horizontal dimensions of the land surface
- Topography is more commonly used term



# Ways to describe terrain

187.8

**.**224

 $\wedge$ 

 Spot Height
 Bench Mark with Elev.
 Shading

Dorohoi Satu Mare Rădăuti • MOLDOVA Suceava Baia Mare Piatra HUNGARY Chisin Neamt Oradea Roman Vaslun alnians Bacău ures Dumbraven Arad Birlad Sighisoara Alba ROMANIA Timisoara Focşani • Galat Brasov . pathians Meridional Braila Resita . Buzău Tulcea Tirgoviste Ploiest YUGOSLAVIA Dobrogea Pitesti Turnu ELEVATION: Severin Bucurest 2 000 m 1 500 m Constanta Călărasi . Craiova 1 000 m 500 m 200 m Alexand BULGARIA 200 km 100

Sulina

#### Shading is visually effective but you can't measure it

t. St Helens post 1980

### Ways to describe terrain

- Contour imaginary line connecting points of equal elevation
   Max slope is at right angles to a contour
  - catchment area?



### **Applications:**

Elevation estimates - interpolation Reservoir Capacity -  $V = i[A_1/2 + A_2 + A_3...+A_n]$ Flood Zone Maps -Forestry **Catchment Basins - Hydrology** Slope Profiles Intervisibility (viewpoints) Harvest Method projections Road Projections

#### Review of FRST 111 - Measurement of slope

1. As a Ratio ▶ Of the rise to the run ▶ Example: 1 in 20, or 1:20 Means a rise of 1m every 20m 2. As an Angle In degrees Example: 10° Maximum is 90° (straight up) 3. As a Percentage Also called the "grade" Calculated as the rise/run x 100 = %45° is 100% slope





Review of FRST 111 - trig functions Sine (sin), cosine (cos), tangent (tan) sin A = opposite side / hypotenuse cos A = adjacent side / hypotenuse tan A = opposite / adjacent = rise / run



#### Calculate VD and HD given Slope in % and SD

SD

HD

VD

HD = SD \* cos A°
 For slope in %....then
 A° = tan<sup>-1</sup> [slope (decimal, 30%=0.30)]

VD = SD \* sin A For slope in %....then VD = HD \* slope (decimal)

# **Topographic Profiles**



### **Creating Profiles**

Determine cross section (cut line) Determine vertical scale (Exaggerated 10X) Use horizontal lines to correspond to elevation ranges 4. Determine horizontal scale if same as map, transfer points directly - if different, calculate difference between contours, then plot Pay attention to +/-

# Mount St. Helens, WA





#### Mount St. Helens, Topographic Profile





### Visual analysis

Determining what will be seen from a particular viewpoint



## Plotting a grade

Determine the most direct route without exceeding specified grade

Figure out the minimum spacing between contours along the road Example: 15% max, 20m contours, 1:5000

convert slope to rise/run: 15/100m
equate to contours: 20m/ ? M
? = 133m
convert to map distance 13300cm/5000= 2.7cm
Locate points and connect

**Plotting a grade - slight variation** Calculate the precise grade between two points:

Determine the start and end elevation.
 Determine the horizontal distance while following the topography
 Grade = Rise/Run
 Figure out the minimum spacing between contours along the road
 Example: going from 250m to 300m in 525m HD with 20m=CI
 higher ele.v-lower elev. = 300-250=50m

50/525 = 9.5 % = 9.5/100

equate to contours: 20m/ X m

X = 210m (if you can use your scale go no further)
- convert to map distance
- Locate points and connect

Reading contour maps
 Streams almost always cross contours at a right angle

Streams, unless on very flat terrain, erode a gulley. This can be seen in the contours by a short bump upstream in the contour. Colour all your streams, lakes, swamps blue as soon as you get a map to help distinguish from contours On the moose lake map do you see 2 places where streams are likely?

#### Calculating an elevation between contours What is the Elevation of \* ?

Create a ratio: If A = 200 m HDand B = 60m HDand CI=25m 60/200 = X/25X= 7.5m = 7.5+275=282.5m



### Review

Three ways to describe slope are?
HD = cos [2<sup>nd</sup> F] tan [dec. slope] \* SD
Create topographic profiles by transferring elevations from horizontal to vertical
Plot a grade using rise/run and topographic map

