

FRST121 Maps & Photos

Air photo geometry and scale

Outline

- 1. How photos and maps differ
- 2. Geometry: similar triangles
- 3. Scale: ratios, variation
- 4. Examples

Aerial photo equipment

Photos: different perspectives

Camera orientation for various types of aerial photographs

How a grid of section lines appears on various types of photos.

Perspective vs orthographic projection

Except...Ortho-photos

A photo-map made from images that have been corrected for distortion and digitally 'glued' together

Geometry: similar triangles

"Similar" if respective angles are equal. Example: *ABC*, *ADE* and *AFG* are similar

So...

ratios of the lengths of corresponding sides are equal.

Geometry: similar triangles

Scale calculation

Effect of focal length on scale

Scale also varies with tilt

Camera orientation for various types of aerial photographs

How a grid of section lines appears on various types of photos.

Can ignore if < 3 degrees

Scale changes with relief

Scale at point A will be different than B

How? A > B

(higher elevation areas will appear larger on the photo)

Average photo elevation vs. point elevations

Adjust "H" for terrain height

H = Altitude (of camera lens) – Elevation (ground)

Example scale calculations

What if the distance on a photo between two points is 10cm, and the ground distance is 1000m. What is the scale?

 $10 \text{cm} / 1000 \text{m} \times 100 \text{cm} \text{(per m)} = 1:10,000$

- What if the focal distance (f) for a photo is 6 inches, and the scale is 1:15,000. How high was the plane flying (in feet)?
 - f/H = 1/15000 So...0.5 ft / H ft = 1/15000 15000 x 0.5 = 7500 ft (if we're talking sea level)

If the ground elevation was 2000 ft, then how would we figure this out??

Example scale calculations

What if the focal distance (f) for a photo is 6 inches, and the scale is 1:15,000, and the ground elevation is 2,000 ft. How high was the plane flying (in feet)?

First, H = Flying Altitude - ElevationSo... H = Alt - 2000 ft, or H + 2000 = Altitude

f/H = 1/15000 So...0.5 ft / H ft = 1/15000 15000 x 0.5 = 7500 ft (same H as before)

7500 + 2000 = 9500 ft (Altitude of the plane)

Example scale calculations

What if we know the flying altitude (23,000 ft), the focal length (305mm) and the photo scale (1:20000). How would we get the avg elevation of the photo in meters?

First, f/H = 1/20000 So...30.5cm / H cm = 1/20000 20000 x 30.5 = 610,000 cm / 2.54cm/in / 12in/ft = 20,013 ft

Next, H = Flying Altitude – Elevation So... H = 23000 - Elev (ft) So...20,013 = 23,000 - Elev (ft) That's 2987 ft / 3.28 ft/m = 911m

All you need to know is...

Another example...

