FRST121 Maps \& Photos

Air photo geometry and scale

Instructors: Doug Corrin
Bill Beese

$\stackrel{\rightharpoonup}{4}$

VANCOUVER ISLAND
Enjoy
the journey.

Outline

1. How photos and maps differ
2. Geometry: similar triangles
3. Scale: ratios, variation
4. Examples

Aerial photo equipment

Images from Selkirk Remote Sensing

Photos: different perspectives

Camera orientation for various types of aerial photographs

Vertical

Low Oblique

High Oblique

How a grid of section lines appears on various types of photos.

How aerial photos and maps differ

Perspective vs orthographic projection

Except...Ortho-photos

A photo-map made from images that have been corrected for distortion and digitally 'glued' together

Geometry: similar triangles

$$
\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AD}}{\mathrm{AE}}
$$

"Similar" if respective angles are equal. Example: $A B C, A D E$ and $A F G$ are similar

So...
ratios of the lengths of corresponding sides are equal.

Geometry: similar triangles

Scale calculation

f focal distance
H Ht above ground

$$
=\frac{1}{x_{-}}
$$

Scale varies with both
f and H
(distance from lens)

Effect of focal length on scale

Scale also varies with tilt

Camera orientation for various types of aerial photographs
 How a grid of section lines appears on various types of photos.

Can ignore if <3 degrees

Scale changes with relief

Scale at point A

will be different than B
How? A > B
(higher elevation areas will appear larger on the photo)

Average photo elevation vs. point elevations

Simple at the seashore

Adjust "H" for terrain height

$\mathrm{H}=$ Altitude (of camera lens) - Elevation (ground)

Example scale calculations

\square What if the distance on a photo between two points is 10 cm , and the ground distance is 1000 m . What is the scale?

$$
10 \mathrm{~cm} / 1000 \mathrm{~m} \times 100 \mathrm{~cm}(\text { per } \mathrm{m})=1: 10,000
$$

What if the focal distance (f) for a photo is 6 inches, and the scale is $1: 15,000$. How high was the plane flying (in feet)?
$\mathrm{f} / \mathrm{H}=1 / 15000$ So... $0.5 \mathrm{ft} / \mathrm{Hft}=1 / 15000$ $15000 \times 0.5=7500 \mathrm{ft}$ (if we're talking sea level)

If the ground elevation was 2000 ft , then how would we figure this out??

Example scale calculations

What if the focal distance (f) for a photo is 6 inches, and the scale is $1: 15,000$, and the ground elevation is $2,000 \mathrm{ft}$. How high was the plane flying (in feet)?

First, $\mathrm{H}=$ Flying Altitude - Elevation
So \ldots H $=$ Alt -2000 ft , or
$\mathrm{H}+2000=$ Altitude
$\mathrm{f} / \mathrm{H}=1 / 15000$ So... $0.5 \mathrm{ft} / \mathrm{Hft}=1 / 15000$
$15000 \times 0.5=7500 \mathrm{ft}$ (same H as before)
$7500+2000=9500 \mathrm{ft}$ (Altitude of the plane)

Example scale calculations

What if we know the flying altitude (23,000 $\mathrm{ft})$, the focal length (305 mm) and the photo scale ($1: 20000$). How would we get the avg elevation of the photo in meters?
First, f/H = 1/20000 So... $30.5 \mathrm{~cm} / \mathrm{H} \mathrm{cm}=1 / 20000$ $20000 \times 30.5=610,000 \mathrm{~cm} / 2.54 \mathrm{~cm} / \mathrm{in} / 12 \mathrm{in} / \mathrm{ft}=$ 20,013 ft

Next, H = Flying Altitude - Elevation
So... H = 23000 - Elev (ft)
So...20,013 = 23,000 - Elev (ft)
That's $2987 \mathrm{ft} / 3.28 \mathrm{ft} / \mathrm{m}=911 \mathrm{~m}$

All you need to know is...

$1 \frac{\text { PD Photo Distance }}{\text { GD Ground Distance }}=\frac{1}{x_{-}}$
$2 \frac{\mathrm{f} \text { focal distance }}{\mathrm{H} \quad \mathrm{Ht} \text { above ground }}=\frac{1}{\mathrm{x}_{-}}$

3
$\mathrm{H}=$ Altitude (of camera lens)

- Elevation (ground)

Remember: same units!

A scale we won't be talking about

Another example...

