
THE RIEMANN-SIEGEL FORMULA AND LARGE
SCALE COMPUTATIONS OF THE RIEMANN ZETA

FUNCTION

by

GLENDON RALPH PUGH

B.Sc., University of New Brunswick, 1992

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

Mathematics

We accept this thesis as conforming
to the required standard

. .

. .

. .

. .

. .

THE UNIVERSITY OF BRITISH COLUMBIA

December 1998

c© Glendon Ralph Pugh, 1998

In presenting this thesis in partial fulfillment of the requirements for an advanced degree at

the University of British Columbia, I agree that the Library shall make it freely available

for reference and study. I further agree that permission for extensive copying of this thesis

for scholarly purposes may be granted by the head of my department or by his or her

representatives. It is understood that copying or publication of this thesis for financial gain

shall not be allowed without my written permission.

(Signature)

Mathematics
The University of British Columbia
Vancouver, Canada

Date

Abstract

This thesis is a survey of the derivation and implementation of the Riemann-Siegel
formula for computing values of Riemann’s zeta function on the line s = 1/2 + it.
The formula, devised by Riemann and later published by Siegel following study of
Riemann’s unpublished work, is the method of choice for both numerically verifying
the Riemann Hypothesis and locating zeros on the critical line at large values of t.

Simply stated, the Riemann Hypothesis is that all of the zeros of ζ(s) in the strip
0 < <(s) < 1 lie on the line <(s) = 1/2. Since Riemann made his conjecture in
1859, much work has been done towards developing efficient numerical techniques for
verifying the hypothesis and possibly finding counter-examples.

This thesis is meant to serve as a guide book for using Riemann-Siegel. It is mostly a
distillation of work done in the field since Siegel’s results published in the early 1930’s.
Computer programs and examples are included, and error bounds are discussed. The
question of how and why Riemann-Siegel is used to verify the Riemann Hypothesis
is examined, and a detailed Riemann Hypothesis verification example is illustrated.
Finally, recent work in the field is noted.

The derivation of the Riemann-Siegel formula for computing ζ(1/2 + it) is based on
the saddle point method of evaluating integrals, and yields results of considerable
accuracy in time t1/2. The saddle point method is an approximation technique which
concentrates the “bulk” of an integral on a path through a point at which the modulus
of the integrand is a maximum.

ii

Table of Contents

Abstract ii

Table of Contents iii

Acknowledgement v

Chapter 1. Introduction 1

Chapter 2. Overview of the Riemann Zeta Function 4

2.1 Introduction . 4
2.2 The Function ζ(s) . 4
2.3 Global Representation of ζ(s) . 5
2.4 Properties of the Zeta Function . 12

Chapter 3. Derivation of the Riemann-Siegel Formula 14

3.1 Introduction . 14
3.2 The Formula . 15
3.3 Derivation of Z(t) . 17
3.4 Saddle Point Argument . 22
3.5 First Approximation . 24
3.6 Change of Variables . 24
3.7 Second Approximation . 25
3.8 Third Approximation . 26
3.9 Fourth Approximation . 27
3.10 An Example . 29
3.11 Errors in the Approximation . 30

Chapter 4. Verification of the Riemann Hypothesis 33

4.1 Introduction . 33
4.2 Gram’s Observations . 34
4.3 The Number of Roots to Height T . 38

Chapter 5. Riemann-Siegel At Work 46

5.1 Introduction . 46
5.2 Results . 46
5.3 Computation . 49
5.4 Programs . 50

5.4.1 The Function C(n,z) . 50
5.4.2 The Function Z(t,n) . 51

iii

Table of Contents

5.4.3 The Function gram(n) . 51
5.4.4 The Function gramblock(n,m,FILE) . 52
5.4.5 The Main Root Counting Program . 53
5.4.6 The Turing Method Program . 53

5.5 Effective Domain of the Algorithms . 54

Chapter 6. Conclusion and Future Work 55

Appendix A. C Functions Used in Main Programs 57

Appendix B. C Program for Simple Evaluation of Z(t) 67

Appendix C. C Program for Counting Roots of Z(t) 69

Appendix D. C Program for Locating Turing Adjustments 73

Bibliography 76

iv

Acknowledgement

I would like to thank all those who have assisted, guided and supported me in my
studies leading to this thesis. In particular, I wish to thank my supervisor Dr. Bill
Casselman for his guidance and encouragement, Dr. David Boyd who kindly agreed
to read my thesis at a busy time of year, and Dr. Leah Keshet and Ms. Helga Diersen
for their assistance as I found my way through the administrative maze.

I would also like to thank my friend Michael Fellows for introducing me to the Linux
operating system on which all programming and typesetting tasks were performed,
and I wish to extend this thanks to the Linux community as a whole for giving
students home access to high quality, low cost workstation-grade computing.

Finally, I would like to thank my family for their continual support and encourage-
ment: my parents Anne and Charles, my brother John who grappled with his own
thesis, and especially my wife Jacqueline for her help and understanding during my
countless hours spent in front of the computer over the past year.

v

Chapter 1

Introduction

In 1859, the German mathematician Bernhard Riemann published his now famous

paper on his studies of prime numbers. This eight page paper, entitled On the Number

of Primes Less Than a Given Magnitude, introduced many new results in the fields of

analytic number theory and complex functions, but contained a number of statements

which were unsupported by rigorous proofs. Proofs for many of these conjectures

were found over the fifty or so years following Riemann’s death in 1866; however one

statement has withstood repeated assaults by several generations of mathematicians.

This conjecture, known universally as the Riemann Hypothesis, is now among the

most famous unsolved problems in mathematics.

The Riemann Hypothesis is a statement about the location of the complex zeros of

the zeta function. Riemann introduced the zeta function ζ(s) for s ∈ C during the

course of his investigations of prime numbers and he explored many of its properties.

In his paper he made the statement that “it is very likely that” all non-trivial zeros

of the zeta function must have real part equal to 1/2, but no proof was provided.

An excellent survey of Riemann’s results and work done in the field since Riemann’s

paper is Harold Edwards’ treatise Riemann’s Zeta Function[1].

The zeta function and related hypothesis are classical fields of study which in recent

years have enjoyed renewed interest. Conjectured relationships between the hypoth-

1

Chapter 1. Introduction

esis and results in mathematical physics have motivated extensive numerical investi-

gations using modern supercomputers. Van de Lune et al. have demonstrated the

correctness of the Riemann Hypothesis for the first one and a half billion non-trivial

zeros of the zeta function[2], while Andrew Odlyzko has verified the correctness of

the hypothesis for large sets of zeros around the 1020th zero[5].

The modern studies of the Riemann Hypothesis use variants of a computational algo-

rithm known as the Riemann-Siegel formula. This approximation algorithm permits

very fast evaluation of the zeta function, and the accuracy of the approximations

of ζ(1/2 + it) improves with increasing t. However, eventually the machine floating

point representation error imposed by the particular computer architecture limits the

validity of the calculations. This accuracy problem can be overcome using extended

precision calculation software, but the loss in computation speed makes calculations at

complex numbers of even moderately large modulus infeasible. Despite these limita-

tions, the Riemann-Siegel formula is still a vast improvement over methods previously

available.

The Riemann-Siegel formula is a remarkable approximation derived and used by Rie-

mann, but never published by him. It was not until 1932 that Carl Siegel uncovered

the formula following a study of Riemann’s unpublished notes. Prior to Siegel’s dis-

covery, the method of choice was Euler-Maclaurin summation which requires on the

order of t steps to evaluate ζ(1/2 + it) (here t ∈ R). The Riemann-Siegel formula, on

the other hand, requires only
√

t steps.

The purpose of this thesis is to examine the Riemann-Siegel formula and understand

how it is used to verify the correctness of the Riemann Hypothesis. It is meant to serve

as a user’s manual, providing the details of the method’s derivation and limitations,

as well as examples and computer programs for its implementation.

2

Chapter 1. Introduction

The next chapter begins with an overview of the Riemann zeta function. In that

chapter we mention some familiar properties of the function and derive a global

representation of it as done by Riemann himself. Some additional results which will

be required in subsequent chapters are then noted. The third chapter contains the

development of the Riemann-Siegel formula. An example of its implementation is

presented followed by a discussion of errors inherent in the method. The fourth

chapter examines the Riemann Hypothesis verification process. Major contributions

by J. Gram and A. Turing are presented, and a curious behaviour of ζ(1/2 + it) at

large values of t is noted. In chapter five we put into practice the concepts developed in

the first four chapters and undertake a detailed verification of the Riemann Hypothesis

for t in the range 0 to 6 000 000. The sixth and final chapter contains concluding

remarks and some suggestions for future investigations.

3

Chapter 2

Overview of the Riemann Zeta
Function

2.1 Introduction

The point of this paper is to examine a particular method of evaluating the Riemann

zeta function. This method, the Riemann-Siegel formula, is the method of choice for

verifying the Riemann Hypothesis. In this chapter I begin by introducing the zeta

function and discussing some of its familiar properties. Following this we will develop

the global representation of the zeta function ζ(s) as Riemann originally derived it,

and at the end of the chapter we will derive a decomposition of the zeta function

which will be needed in the development of the Riemann-Siegel formula.

2.2 The Function ζ(s)

For s ∈ C with <(s) > 1, the function ζ(s) is defined by

ζ(s) =
∞∑

n=1

1

ns
.

This sum converges for <(s) > 1 and diverges otherwise. For each δ > 0, convergence

is uniform for <(s) ≥ 1 + δ.

Some well known values of this function are ζ(2) = π2/6, ζ(4) = π4/90. In general,

for n a non-negative integer, ζ(2n) = (2π)2n (−1)n+1 B2n/ ((2n)!2) where Bk are the

4

Chapter 2. Overview of the Riemann Zeta Function

Bernoulli numbers defined by the expansion x/ (ex − 1) =
∑∞

n=0 Bnxn/n!. There is

no known closed form expression for ζ(2n + 1).

The ζ function so defined is related to the study of prime numbers by

∞∑
n=1

1

ns
=
∏

p

(
1 − p−s

)−1

where p ranges over the prime numbers and <(s) > 1. This identity can be shown by

writing (1 − p−s)
−1

=
∑∞

n=0 (1/ps)n for each p and expanding the product of these

series.

2.3 Global Representation of ζ(s)

The definition of the ζ function given in Section 2.2 is valid only for <(s) > 1. The

following definition extends ζ to all points s ∈ C \ {1}:

ζ(s) =
Π(−s)

2πi

∫
Cε,δ

(−x)s

(ex − 1)x
dx , (2.1)

where Cε,δ is the contour

ε δ

.

5

Chapter 2. Overview of the Riemann Zeta Function

Here the definition of (−x)s is es log (−x) with −π < =(log (−x)) < π.

The size of δ above may be as small as we please — the equivalence of (2.1) under

different choices of δ is guaranteed by Cauchy’s Theorem and the dominance away

from the origin of the exponential term of the integrand. Further, Cauchy’s Theorem

also permits ε, the size of the radius of the path about the origin, to be any value

between 0 and the radius at which the first singularity of the integrand occurs, 2π.

These permitted variations in the contour Cε,δ will be used in the derivation to follow.

A standard definition of the global representation of the zeta function is one which

uses the limiting contour as δ → 0 with ε = 1, which is expressed thus:

ζ(s) =
Π(−s)

2πi

∫ +∞

+∞

(−x)s

(ex − 1)x
dx .

The limits of integration are meant to indicate a path which starts at +∞, descends

parallel and just above the real-axis, circles the origin once in the positive direction,

and returns to +∞ parallel and just below the real-axis. Note that this path must

not be considered to coincide with the positive real axis since log(−x) is not defined

for x ∈ R+ . We will express this version of the definition more concretely as

ζ(s) =
Π(−s)

2πi

∫
C1,0

(−x)s

(ex − 1)x
dx =

Π(−s)

2πi
lim
δ→0

∫
C1,δ

(−x)s

(ex − 1)x
dx . (2.2)

We will devote the remainder of this section to the derivation of (2.1). To begin, we

consider the integral definition of the factorial function with argument s ∈ R, s > 1:

Π(s − 1) =

∫ ∞

0

e−xxs−1 dx, s > 1 . (2.3)

Here Π(s − 1) is used in place of the more familiar Γ(s). This notation of Gauss for

the extended factorial function was used by Riemann and is retained by Edwards[1]

in his work, and we will do the same here. Note that Π(n) coincides with n! for n a

6

Chapter 2. Overview of the Riemann Zeta Function

positive integer. Now fix an integer K > 0 and set x = nt in the integral (2.3), so

that

Π(s − 1) =

∫ ∞

0

e−nt (nt)s−1 n dt .

From this we may develop

Π(s − 1) n−s =

∫ ∞

0

e−ntts−1 dt

⇒
K∑

n=1

Π(s − 1) n−s =
K∑

n=1

∫ ∞

0

e−ntts−1 dt

⇒ Π(s − 1)
K∑

n=1

n−s =

∫ ∞

0

(
K∑

n=1

e−nt

)
ts−1 dt

⇒ Π(s − 1)
K∑

n=1

n−s =

∫ ∞

0

(
1 − e−Kt

et − 1

)
ts−1 dt . (2.4)

Observe that for each t > 0, the integrand in (2.4) is a positive function increasing

with K to the L1(dt) function ts−1/ (et − 1). Thus we may apply the Monotone

Convergence Theorem to yield

lim
K→∞

Π(s − 1)
K∑

n=1

n−s = lim
K→∞

∫ ∞

0

(
1 − e−Kt

et − 1

)
ts−1 dt

=

∫ ∞

0

lim
K→∞

(
1 − e−Kt

et − 1

)
ts−1 dt

=

∫ ∞

0

ts−1

et − 1
dt .

That is,

Π(s − 1)

∞∑
n=1

n−s =

∫ ∞

0

ts−1

et − 1
dt . (2.5)

We now turn our attention to the integral in (2.1):∫
Cε,δ

(−x)s

(ex − 1)x
dx , (2.6)

7

Chapter 2. Overview of the Riemann Zeta Function

where Cε,δ was

ε δ

.

Again, for the moment assume only that s ∈ R, s > 1. As noted following definition

(2.1), the paths Cε,δ may be altered to suit our purpose—equality of the integrals over

the different paths is guaranteed by Cauchy’s Theorem. We will consider the set of

contours Cε,δ(ε) where δ(ε) = ε/
√

2:

ε ε/
√

2
π/4 .

Γ1(ε)
Γ2(ε)

Γ3(ε)

8

Chapter 2. Overview of the Riemann Zeta Function

Since the value of the integral is invariant under decreasing ε, (2.6) is equal to

lim
ε→0

∫
Cε,δ(ε)

(−x)s

(ex − 1) x
dx .

To evaluate this last expression, fix an ε sufficiently small and consider the integral

over each of the paths Γ1(ε), Γ2(ε) and Γ3(ε). Writing x = t + iε, the integral over

Γ1(ε) may be written ∫ 0

+∞

(−t − iε)s

(et+iε − 1) (t + iε)
Iε dt (2.7)

where Iε is the indicator function of the set
[
ε/
√

2,∞). Now

lim
ε→0

[
(−t − iε)s

(et+iε − 1) (t + iε)
Iε

]

exists for each t, and

∣∣∣∣ (−t − iε)s

(et+iε − 1) (t + iε)
Iε

∣∣∣∣ ≤ (t2 + ε2)
s−1
2

et − 1
≤ 2s ts−1

et − 1
,

where

2s

∫ ∞

0

ts−1

et − 1
dt = 2sΠ(s − 1)

∞∑
n=1

1

ns
< ∞.

The Dominated Convergence Theorem then allows us to conclude that the limit as

ε → 0 of (2.7) exists. Indeed,

lim
ε→0

∫ 0

+∞

es log (−t−iε)

(et+iε − 1) (t + iε)
Iε dt = lim

ε→0

∫ 0

+∞

es log (t+iε)−iπ

(et+iε − 1) (t + iε)
Iε dt

= −e−iπs lim
ε→0

∫ +∞

0

es log (t+iε)

(et+iε − 1) (t + iε)
Iε dt

= −e−iπs

∫ +∞

0

ts−1

(et − 1)
dt .

A similar argument can be used to show that as ε → 0, the integral over Γ3(ε) becomes

eiπs

∫ +∞

0

ts−1

(et − 1)
dt .

9

Chapter 2. Overview of the Riemann Zeta Function

For the integral over Γ2(ε), write x = −εeiθ, dx = −εieiθdθ. Then

∫
Γ2(ε)

(−x)s

(ex − 1)x
dx =

∫ 3π/4

−3π/4

− (εeiθ
)s

εieiθ(
e−εeiθ − 1

)
(−εeiθ)

dθ

= i

∫ 3π/4

−3π/4

εeiθs∑∞
j=1 (−εeiθ)j /j!

dθ

= iεs−1

∫ 3π/4

−3π/4

eiθ (s−1)∑∞
j=1 (−εeiθ)j−1 /j!

dθ ,

and this last expression approaches zero as ε → 0.

Combining the integrals over the three paths then yields

lim
ε→0

∫
Cε,δ(ε)

(−x)s

(ex − 1) x
dx =

(
eiπs − e−iπs

) ∫ +∞

0

ts−1

(et − 1)
dt

= 2i sin(πs)Π(s − 1)
∞∑

n=1

1

ns
. (2.8)

Taking note of the factorial function identity

πs

Π(s) Π(−s)
= sin(πs) , (2.9)

we may replace sin(πs) in (2.8) to obtain

lim
ε→0

∫
Cε,δ(ε)

(−x)s

(ex − 1)x
dx =

2iπs

Π(s) Π(−s)
Π(s − 1)

∞∑
n=1

1

ns

from which

Π(−s)

2πi
lim
ε→0

∫
Cε,δ(ε)

(−x)s

(ex − 1)x
dx =

∞∑
n=1

1

ns
= ζ(s) . (2.10)

For the purposes of our derivation, we considered the limit of the integral in (2.10) as

ε → 0. However, as observed earlier in this section, this limit is equal to the integral

10

Chapter 2. Overview of the Riemann Zeta Function

over any of the equivalent paths Cε,δ. Following the convention introduced in equation

(2.2), let

Π(−s)

2πi

∫
C0,0

(−x)s

(ex − 1) x
dx

denote the limit expression in (2.10). Then the statement of equivalence over different

contours is

Π(−s)

2πi

∫
C0,0

(−x)s

(ex − 1)x
dx =

Π(−s)

2πi

∫
Cε,δ

(−x)s

(ex − 1) x
dx ,

and (2.10) may be expressed more generally as

Π(−s)

2πi

∫
Cε,δ

(−x)s

(ex − 1)x
dx =

∞∑
n=1

1

ns
= ζ(s) . (2.11)

At this point we may make two observations:

1. The Π(−s) factor in (2.11) has singularities when s is a positive integer. The

right hand side of (2.11), on the other hand, is defined at all such points except

for s = 1. Thus the the integral expression in (2.11) must have zeros at the

positive integers greater than 1. Indeed, this fact follows immediately from

(2.8).

2. Although we have derived (2.11) under the assumption that s ∈ R, s > 1, for

each εδ path the integral in (2.11) converges for all s ∈ C . In fact, the function∫
Cε,δ

(−x)s

(ex − 1)x
I{<(x)<N} dx

is an analytic function of s, and the convergence as N → ∞ to∫
Cε,δ

(−x)s

(ex − 1) x
dx

is uniform. As such, the left hand side of (2.11) is defined and analytic at all

points s ∈ C \ 1. At s = 1 we note that Π(−s) has a simple pole. Hence (2.11)

with s ∈ C \ 1 is our required global definition of the zeta function.

11

Chapter 2. Overview of the Riemann Zeta Function

2.4 Properties of the Zeta Function

Riemann used his global definition of the zeta function to derive many interesting re-

lations. Two of these which are relevant to the verification of the Riemann Hypothesis

are the functional equation of the zeta function and the function ξ(s).

The functional equation of the zeta function is

ζ(s) = Π(−s) (2π)s−1 2 sin(sπ/2) ζ(1 − s) ,

which Riemann derives by considering the evaluation of (2.10) at negative real values

of s. Using this equation one can immediately demonstrate that ζ(−2k) = 0 for

k = 1, 2,

Applying (2.9) and another familiar factorial identity

Π(s) = 2sΠ
(s

2

)
Π

(
s − 1

2

)
π−1/2 (2.12)

to the functional equation puts it in the form

Π
(s

2
− 1
)

π−s/2ζ(s) = Π

(
1 − s

2
− 1

)
π− (1−s)/2ζ(1 − s) .

Observe that this equation remains unchanged under the transformation s 7→ 1 − s.

The function ξ(s) is defined by

ξ(s) = Π
(s

2

)
(s − 1) π−s/2ζ(s) .

The s − 1 term in the ξ function definition eliminates the simple pole of ζ at s = 1

so that ξ(s) is an entire function. From the functional equation of the zeta function

we have that ξ(s) = ξ(1 − s).

One important fact about ξ(s) is that it is real when s lies on the line 1/2+ it, t ∈ R,

(this set of points is called the critical line). This fact can be deduced as follows:

12

Chapter 2. Overview of the Riemann Zeta Function

For s ∈ R, ξ(s) ∈ R. By the Schwartz reflection principle, ξ(s) = ξ(s), so that

ξ(s) = ξ(s). With s = 1/2+ it, t real, and using the functional equation we may then

write

ξ(1/2 + it) = ξ(1 − (1/2 + it)) = ξ
(
1/2 + it

)
= ξ(1/2 + it) . (2.13)

So locating roots on the critical line reduces to locating sign changes of ξ(1/2 + it).

Further analysis of ξ(1/2 + it) simplifies our task even further:

ξ(s) = Π
(s

2

)
(s − 1)π−s/2ζ(s) = Π

(s

2
− 1
) s (s − 1)

2
π−s/2ζ(s) ,

and substituting s = 1/2 + it yields

ξ

(
1

2
+ it

)
=

(
e<[log Π(it

2
− 3

4)]π−1/4−t2 − 1/4

2

)
×
(

ei=[log Π(it
2
− 3

4)]π−it/2ζ

(
1

2
+ it

))
.

The point to notice is that the first term above is always negative, so that sign changes

in ξ(1/2 + it) correspond to sign changes of the second term. This second term is

denoted Z(t), and the relationship between Z(t) and ζ(1/2 + it) is written

Z(t) = eiϑ(t)ζ

(
1

2
+ it

)

where

ϑ(t) = =
[
log Π

(
it

2
− 3

4

)]
− t

2
log(π) .

The Riemann-Siegel formula is an approximation formula for Z(t). Once Z(t) is

known, a straightforward approximation of ϑ(t) can then be used to easily compute

ζ(1/2 + it).

13

Chapter 3

Derivation of the Riemann-Siegel
Formula

3.1 Introduction

Now that we have motivated our discussion by introducing the Riemann zeta function

and stating the Riemann Hypothesis, let us develop a method for evaluation of the ζ

function.

Prior to Carl Siegel’s 1932 rediscovery of Riemann’s method, the most widely used

algorithm for evaluating the ζ function was Euler-Maclaurin summation. Euler-

Maclaurin summation is essentially an approximation method for summing a series

(finite or infinite) by splitting off a certain finite part and estimating the remainder.

This method can be used to evaluate not only the ζ function, but many other func-

tions that satisfy certain regularity conditions. Further, Euler Maclaurin Summation

can be used to compute the values of the ζ function at all points of C \{1} to any pre-

scribed degree of accuracy. For evaluating ζ(1/2 + it), Euler Maclaurin Summation

requires on the order of |t| steps for a single evaluation.

The Riemann-Siegel formula, on the other hand, is a very specialized method for

evaluating the ζ function on the critical line. Riemann-Siegel is actually a formula for

computing Z(t) from which ζ(1/2 + it) can easily be computed (see Section 2.4). The

14

Chapter 3. Derivation of the Riemann-Siegel Formula

algorithm has been extended to accommodate points not on the critical line. How-

ever Riemann’s derivation was concerned only with the more restricted set. Riemann-

Siegel is a true approximation in the sense that certain contour integrals are truncated

to permit their closed form evaluation, and as a result, small errors are introduced

which are unrelated to the truncation of an asymptotic series. These error terms

decrease very rapidly as |1/2 + it| increases, and therefore do not cause a serious

problem. The strength of Riemann-Siegel is the speed. The evaluation of ζ(1/2 + it)

requires only order
√|t| steps, which allows for very efficient root counting algo-

rithms. For the purposes of verifying the Riemann Hypothesis, this is of particular

importance—we will see that it is not the precise location of a root which is important,

but rather its existence.

In the sections that follow, the main formula is presented, followed by an overview of

the derivation broken down into its key steps. An example and a discussion of errors

is presented in the last two sections.

3.2 The Formula

The Riemann-Siegel formula for computing ζ(1/2 + it), t ∈ R+ , is the following

(from [1]):

Set N =
⌊
(t/2π)1/2

⌋
(the integer part of (t/2π)1/2), p = (t/2π)1/2 − N . Then

Z(t) = 2

N∑
n=1

n−1/2 cos [ϑ(t) − t log n] + R

where

ϑ(t) = =
[
log Π

(
it

2
− 3

4

)]
− t

2
log π

and

R ≈ (−1)N−1

(
t

2π

)−1/4
[
C0 + C1

(
t

2π

)−1/2

+ C2

(
t

2π

)−2/2

+ C3

(
t

2π

)−3/2

+ C4

(
t

2π

)−4/2
]

15

Chapter 3. Derivation of the Riemann-Siegel Formula

with

C0 = Ψ(p) =
cos [2π (p2 − p − 1/16)]

cos (2πp)
,

C1 = − 1

96π2
Ψ(3)(p) ,

C2 =
1

18 432π4
Ψ(6)(p) +

1

64π2
Ψ(2)(p) ,

C3 = − 1

5 308 416π6
Ψ(9)(p) − 1

3840π4
Ψ(5)(p) − 1

64π2
Ψ(1)(p) ,

C4 =
1

2 038 431 744π8
Ψ(12)(p) +

11

5 898 240π6
Ψ(8)(p) +

19

24 576π4
Ψ(4)(p) +

1

128π2
Ψ(p) .

As noted previously, Π(x) is equal to Γ(x + 1). Also, ϑ(t) can be approximated using

Stirling’s series:

ϑ(t) =
t

2
log

t

2π
− t

2
− π

8
+

1

48t
+

7

5760t3
+ · · · (3.1)

which, for large t, has a small error even if truncated at only a few terms.

The derivation to follow will show how to compute as many of the Cj [t/ (2π)]−j/2

terms as desired; Riemann himself developed the formula with 5.

Once Z(t) and ϑ(t) are known, ζ(1/2 + it) is computed as

ζ

(
1

2
+ it

)
= Z(t) e−iϑ(t) .

16

Chapter 3. Derivation of the Riemann-Siegel Formula

3.3 Derivation of Z(t)

We begin with the global form of ζ(s) derived in Section 2.3:

ζ(s) =
Π(−s)

2πi

∫
Cε,δ

(−x)s

(ex − 1) x
dx

where Cε,δ is the contour

ε δ

and 0 < ε < 2π.

For the time being, let us return to the case where s ∈ R, s > 1, and suppose that N

is a fixed positive integer. Using the same techniques as those of Section 2.3, we may

write

ζ(s) =
Π(−s)

2πi

∫
Cε,δ

(−x)s

(ex − 1)x
dx

=
Π(−s)

2πi

∫
C0,0

(−x)s

(ex − 1)x
dx

17

Chapter 3. Derivation of the Riemann-Siegel Formula

=
Π(−s)

2πi

∫
C0,0

(
N∑

n=1

e−nx

)
(−x)s

x
dx +

Π(−s)

2πi

∫
C0,0

e−Nx (−x)s

(ex − 1)x
dx

=

N∑
n=1

1

ns
+

Π(−s)

2πi

∫
C0,0

e−Nx (−x)s

(ex − 1) x
dx

=

N∑
n=1

1

ns
+

Π(−s)

2πi

∫
Cε,δ

e−Nx (−x)s

(ex − 1) x
dx .

Once again, the equalities above under transformed contours is justified by Cauchy’s

Theorem.

Next, expand the contour Cε,δ beyond the first 2N singularities of the integrand

to C(2N+1)π,δ, and to maintain equality, add integrals around each singularity over

paths with reverse orientation. That is, transform the contour of integration to the

following:

2πi

4πi

2Nπi

(2N+1)πi

−2πi

−4πi

−2Nπi

−(2N+1)πi

18

Chapter 3. Derivation of the Riemann-Siegel Formula

where each of the small circular paths have radius 0 < ρ < π. For convenience, denote

C(2N+1)π,δ by CN,δ.

The residue theorem can then be used to compute the integrals about the singularities

±2πi,±4πi, . . . ,±2Nπi. For the singularities above the real axis, letting
∮

denote

reverse orientation of the path we may write

Π(−s)

2πi

∮
|x−2jπi|=ρ

e−Nx (−x)s

(ex − 1)x
dx = −Π(−s)

2πi
2πi Res

[
e−Nx (−x)s

(ex − 1)x

]
(x=2jπi)

= Π(−s) (2π)s−1 ie−iπs/2js−1 .

Similarly, for the singularities below the real axis,

Π(−s)

2πi

∮
|x+2jπi|=ρ

e−Nx (−x)s

(ex − 1)x
dx = −Π(−s)

2πi
2πi Res

[
e−Nx (−x)s

(ex − 1)x

]
(x=−2jπi)

= −Π(−s) (2π)s−1 ie−iπs/2js−1 .

Pairing the integrals over conjugate singularities and summing the result yields

Π(−s) i (2π)s−1 (e−iπs/2 − eiπs/2
) N∑

j=1

j−(1−s) = Π(−s) (2π)s−1 2 sin
(πs

2

) N∑
j=1

j−(1−s) ,

so that

ζ(s) =

N∑
n=1

ns

+ Π(−s) (2π)s−1 2 sin
(πs

2

) N∑
n=1

n−(1−s)

+
Π(−s)

2πi

∫
CN,δ

e−Nx (−x)s

(ex − 1)x
dx . (3.2)

As with our derivation of the global representation of the zeta function, we have

arrived at this result under the restrictive assumption that s ∈ R, s > 1. However,

19

Chapter 3. Derivation of the Riemann-Siegel Formula

again in this case, the right hand side of (3.2) is defined and analytic at all complex

numbers except possibly the positive integers. By defining the value of the right hand

side of (3.2) at a positive integer to be the limit of its values nearby, it is possible

to show that (3.2) is defined for all s except s = 1 where it has a simple pole. Thus

(3.2) is another (global) representation of (2.11).

Now multiply both sides of (3.2) by s (s − 1)Π(s/2 − 1)π−s/2/2 and apply the iden-

tities (2.9) and (2.12) to obtain

ξ(s) = (s − 1)Π
(s

2

)
π−s/2

N∑
n=1

n−s

+ (−s) Π

(
1 − s

2

)
π−(1−s)/2

N∑
n=1

n−(1−s)

+
(−s) Π

(
1−s
2

)
π−(1−s)/2

(2π)s−1 2 sin(πs/2) 2πi

∫
CN,δ

e−Nx (−x)s

(ex − 1)x
dx . (3.3)

From this point on, we will restrict s to the critical line. Further, as a result of (2.13),

we need only consider those points 1/2+ it on the critical line with positive imaginary

part. Set s = 1/2+it in (3.3), and let f(t) = (−1/2 + it) Π(1/2 (−1/2 + it)) π−(1/2+it)/2.

Then (3.3) may be written

ξ

(
1

2
+ it

)
= f(t)

N∑
n=1

n−(1/2+it)

+ f(−t)

N∑
n=1

n−(1/2−it)

+
−f(−t)

(2π)1/2+it 2 sin
(

π
2

(
1
2

+ it
))

i

∫
CN,δ

e−Nx (−x)−1/2+it

ex − 1
dx . (3.4)

20

Chapter 3. Derivation of the Riemann-Siegel Formula

Defining r(t) = f(t) e−iϑ(t), we have

ξ

(
1

2
+ it

)
= r(t) Z(t) ,

and it is not difficult to show that r(t) is an even function. Further, from the definition

of ϑ(t) we can deduce that this last function is odd. Inserting this new information

into (3.4) and canceling like factors then yields

Z(t) = eiϑ(t)

N∑
n=1

n−(1/2+it)

+ e−iϑ(t)

N∑
n=1

n−(1/2−it)

+
e−iϑ(t)

(2π)1/2+it 2 sin
(

π
2

(
1
2

+ it
))

i

∫
CN,δ

e−Nx (−x)−1/2+it

ex − 1
dx . (3.5)

Finally, convert the sine function in (3.5) to its complex exponential form, and com-

bine the two sum terms to get

Z(t) =
N∑

n=1

n−1/2
[
eiϑ(t)n−it + e−iϑ(t)nit

]

+
e−iϑ(t)e−tπ/2

(2π)1/2+it e−iπ/4 (1 − ie−tπ)

∫
CN,δ

e−Nx (−x)−1/2+it

ex − 1
dx

= 2
N∑

n=1

n−1/2 cos [ϑ(t) − t log n]

+
e−iϑ(t)e−tπ/2

(2π)1/2+it e−iπ/4 (1 − ie−tπ)

∫
CN,δ

e−Nx (−x)−1/2+it

ex − 1
dx

= SN + RN . (3.6)

21

Chapter 3. Derivation of the Riemann-Siegel Formula

This then is the starting point for our approximation. The SN term above is readily

computable, we merely have to choose a value for N . The RN term, on the other

hand, must be approximated, and this will be the focus of the following sections. In

the process of approximating RN , we will see that N is determined for us by the

approximation method, and it turns out to be a value which greatly reduces the

computation time for SN .

3.4 Saddle Point Argument

At this point, let us suppose we are given a t > 0 for which to compute Z(t). Then set

N =
⌊
(t/2π)1/2

⌋
, a = i (2πt)1/2, and deform CN,δ into the path L = L0∪L1∪L2∪L3 :

L0

L1

L2

L3

a

−(2N+1)iπ

.

CN,δ

22

Chapter 3. Derivation of the Riemann-Siegel Formula

The length of L1 above is |a|. Then

RN =
e−iϑ(t)e−tπ/2

(2π)1/2+it e−iπ/4 (1 − ie−tπ)

∫
L

e−Nx (−x)−1/2+it

ex − 1
dx . (3.7)

The motivation here is that the absolute value of the numerator of the integrand

in (3.7) has a saddle point at x = (−1/2 + it) /N ≈ a, and the path through x =

(−1/2 + it) /N parallel to L1 is the line of steepest descent through the saddle point.

In other words the integral along L1 approximates the integral through the saddle

point along the line of steepest descent, and hence “concentrates” the integral along

L1 near a.

For example, consider t = 100. Then N = 4 and a = i
√

200π ≈ 25i. To see that a

is near a saddle point of
∣∣∣e−Nx (−x)1/2+it

∣∣∣ = e<[(−1/2+it) log(−x)−Nx], it suffices to show

that a is near a saddle point of the exponent < [(−1/2 + it) log(−x) − Nx]. Plotting

this last function over the region {x | − 13 < <(x) < 13, 12 < =(x) < 38} containing

a shows that this is indeed the case:

<(x)
=(x)

<[(−1/2+it) log(−x)−Nx]

−10
0

10
20

30

140

160

180

23

Chapter 3. Derivation of the Riemann-Siegel Formula

Once again, equality of (3.6) and (3.7) under deformation of the contour is justified by

Cauchy’s Theorem and the dominance of the exponential terms of the integrand away

from the origin. In particular, although L0 and L3 no longer run toward infinity along

parallel conjugate paths near the real axis, their real parts still become arbitrarily

large.

3.5 First Approximation

Note that so far, no approximations have been made. This is the first: ignore the

integrals over L0, L2 and L3 in (3.7) so that

RN ≈ R1,N =
e−iϑ(t)e−tπ/2

(2π)1/2 (2π)it e−iπ/4 (1 − ie−tπ)

∫
L1

(−x)−1/2+it e−Nx

ex − 1
dx . (3.8)

Edwards[1] demonstrates that the error in this approximation is at most e−t/11 for

t > 100. So the integral in (3.7) is in fact very highly concentrated near a = i (2πt)1/2

over the short path L1 passing close to the saddle point x = (−1/2 + it) /N .

3.6 Change of Variables

The next step is to obtain a rapidly convergent expansion in terms of (x − a) of

the numerator (−x)−1/2+it e−Nx from (3.8). To this end, set p = (t/2π)1/2 − N , the

fractional part of (t/2π)1/2, and write the numerator of the integrand in (3.8) as

(−x)−1/2+it e−Nx = (−a)−1/2+it g(x − a) exp
[−Na + p (x − a) + i (x − a)2 / (4π)

]
where

g(x − a) = exp

[
−i (x − a)2

4π
− p (x − a) − N (x − a) +

(
−1

2
+ it

)
log

(
1 +

x − a

a

)]
.

The motivation here is to factor out the terms of the numerator which make the

largest contribution, leaving a function g(x − a) whose power series converges very

rapidly on L1.

24

Chapter 3. Derivation of the Riemann-Siegel Formula

Without computing its coefficients, consider g(x − a) as a power series
∑∞

n=0 bn (x − a)n.

Now make the change of variables x = u + 2πiN and simplify. The result is then

R1,N =

(
t

2π

)−1/4
[

ei(− 1
48t

− 7
5760t3

+···)

1 − ie−tπ

]
(−1)N−1

× eiπ/8e−2πip2 1

2πi

∫
Γ1

eiu2/(4π)e2pu
∑∞

n=0 bn (u − 2πip)n

eu − 1
du (3.9)

where Γ1 is the contour

2πip

Γ1

.

Here again, the length of Γ1 is |a|.

3.7 Second Approximation

Since the series in (3.9) converges very rapidly, let us consider truncation of the series

at, say, the Kth term. Then (3.9) becomes

R1,N ≈ R2,N =

(
t

2π

)−1/4
[

ei(− 1
48t

− 7
5760t3

+···)

1 − ie−tπ

]
(−1)N−1

×eiπ/8e−2πip2 1

2πi

∫
Γ1

eiu2/(4π)e2pu
∑K

n=0 bn (u − 2πip)n

eu − 1
du .(3.10)

25

Chapter 3. Derivation of the Riemann-Siegel Formula

We will see later that this single step introduces the dominant error of the approxi-

mation method.

3.8 Third Approximation

Next, we would like to evaluate the integral in (3.10). Riemann was not able to

compute this integral exactly, but he was able to show that term by term integration

was possible if the path Γ1 in (3.10) was extended to the path Γ as follows:

2πip

Γ

.

Then the remainder term becomes

R2,N ≈ R3,N = (−1)(N−1)

(
t

2π

)−1/4
[

ei(− 1
48t

− 7
5760t3

+···)

1 − ie−tπ

]
K∑

n=0

bncn (3.11)

where

cn = eiπ/8e−2πip2 1

2πi

∫
Γ

eiu2/(4π)e2pu (u − 2πip)n

eu − 1
du .

Analysis of g(x − a) from Section 3.6 shows b0 = 1. Riemann was able to show that

c0 = Ψ(p) =
cos [2π (p2 − p − 1/16)]

cos(2πp)
.

26

Chapter 3. Derivation of the Riemann-Siegel Formula

The task now is to approximate
∑K

n=0 bncn.

3.9 Fourth Approximation

Riemann devised a method of approximating
∑K

n=0 bncn in (3.11) which does not

require the computation of the individual bn’s and cn’s. With this method, one

obtains an exact expression for
∑bK/3c

n=0 bncn.

Let ω = (2π/t)1/2 and show the following:

• Each coefficient bn is a polynomial in ω of degree n. The coefficients b0, b1 and

b2 contain only terms in ω0, ω1 and ω2 respectively. All other bn contain no

terms in ω of degree less than bn/3c.

• Each integral cn is a linear combination of Ψ(k)(p), k = 0, . . . , n, and the coeffi-

cient of each Ψ(k)(p) does not involve t. The cn satisfy the formal relationship

e2πiy2
∞∑

m=0

Ψ(m)(p)

m!
ym =

∞∑
n=0

(2y)n

n!
cn . (3.12)

• The truncated series
∑K

n=0 bncn is therefore a polynomial in ω whose coefficients

are linear combinations of Ψ(k)(p) not involving t .

Start by multiplying both side of the formal relationship (3.12) by
∑K

j=0 j!bj (2y)−j

which yields(
e2πiy2

K∑
j=0

j!bj (2y)−j

)(∞∑
m=0

Ψ(m)(p)

m!
ym

)
=

(∞∑
n=0

(2y)n

n!
cn

)(
K∑

j=0

j!bj (2y)−j

)

(3.13)

The first factor of the left hand side of (3.13) can be considered a polynomial in ω

with coefficients which are functions of y. That is,

e2πiy2
K∑

j=0

j!bj (2y)−j =
K∑

j=0

Aj (y)ωj = G(y) .

27

Chapter 3. Derivation of the Riemann-Siegel Formula

The right hand side of (3.13) is a series in y with constant term
∑K

n=0 bncn =∑K
j=0 Cjω

j say.

The bn can be shown to satisfy a recurrence relation

bn+1 =
πi (2n + 1) bn − bn−2

4π2ω−1 (n + 1)
, (3.14)

where bn = 0 for n < 0, from which a recurrence relation for the Aj can be derived:

Aj = −1

2
yAj−1 − 1

32
π−2D2

(
y−1Aj−1

)
. (3.15)

Note that A0 = e2πiy2
.

As a result of our first observation above, A0, . . . , AbK/3c are independent of K, so

use (3.15) to compute these. Once Aj, j = 0, . . . , bK/3c are known, compute the

constant term of

Aj (y)

∞∑
m=0

Ψ(m)(p)

m!
ym .

These are our Cj . Finally then,

K∑
n=0

bncn ≈
bK/3c∑
j=0

Cjω
j

This method is labour saving, however it should be noted that the bn’s and cn’s can

be computed directly using their recurrence relations. That is, the bn’s (as a function

of ω) can be computed from (3.14) and from (3.12) we have

cn =
n!

2n

bn/2c∑
j=0

(2πi)j

2j!

Ψ(n−2j)(p)

(n − 2j)!
.

Using a symbolic computation package such as Maple it would not be difficult to

compute
∑K

n=0 bncn as the desired series in increasing powers of ω.

28

Chapter 3. Derivation of the Riemann-Siegel Formula

3.10 An Example

Appendix B contains an implementation of the Riemann-Siegel method written in

the C programming language. This program allows the user to input the endpoints of

the (positive) t domain as well as the number of sample points desired. The output

is a list of (t, Z(t)) pairs suitable for plotting using a plotting package.

The following is a plot of (t, Z(t)) for 6 × 106 ≤ t ≤ 6 × 106 + 10 using 10 000 data

samples:

Z(t), 6×106 ≤ t ≤ 6×106+108

−8

t

Z(t) .

29

Chapter 3. Derivation of the Riemann-Siegel Formula

3.11 Errors in the Approximation

There are three main sources of error in calculating Z(t) using the Riemann-Siegel

formula. The first two of these are due to the approximations made in the derivation

of the formula, while the third is inherent in the tools used to compute the value of

the approximation at a given point: the computer hardware and software.

The introduction of the first error was in Section 3.5 where the contour of the integral

was restricted to a short path through a point on the imaginary axis which was near

a saddle point of the integral. As noted in that section, Edwards[1] shows that the

error in that approximation is O
(
e−t/11

)
.

The second, more significant error is that of Section 3.7 where the series expansion

of g(x − a) is truncated. Bounds on the size of this error have been determined by

Titchmarsh[6] and more recently by W. Gabcke as noted in Odlyzko’s work[5]. Citing

a much more complicated result of his own, Titchmarsh notes that if the C0 term is

the only term retained in the Riemann-Siegel formula for Z(t), then the error in the

approximation is less than 3/2t−3/4 for t > 125.

According to Odlyzko, Gabcke’s result is “essentially optimal” and states that if the

C0 and C1 terms are the only terms retained in the Riemann-Siegel approximation,

then the error is at most 0.053t−5/4 for t ≥ 200.

Although Riemann’s ingenious method for computing the Ψ(n)(p) functions greatly

facilitates the computation of many of the Cn terms, in practice only two or three of

these last terms are required to determine the existence of a zero of the ζ function. For

large values of t, provided |Z(t)| is sufficiently large between zeros, Gabcke’s result

ensures sufficient accuracy to identify the existence of a zero.

30

Chapter 3. Derivation of the Riemann-Siegel Formula

Finally, the third source of error in the computations is that inherent in the floating

point arithmetic used by the computer. To model the real line, compilers use a finite

set of discrete points, and the accuracy of the model depends on the data types used

for the calculation in question. For the present case, floating point data types were

declared long double to maintain as much accuracy as possible for the computations

of Z(t) at large values of t. The GNU C Compiler used to implement the programs

contained in the appendices uses twenty digits for both computation and storage of

long double data types on Intel-80x86 based systems.

The greatest amount of accuracy is lost in the floating point evaluation of∑
n−1/2 cos(ϑ(t) − t log n) .

Firstly, the argument of the cosine function is O(t log t), which, when reduced modulo

2π and evaluated by the cosine function, leaves about 20− dlog10 te decimal digits to

the right of the decimal point. Secondly, the error of each of these cosine evaluations

is accumulated when the b√t/ (2π)c terms of the series are summed.

One of the main uses of the Riemann-Siegel formula is not to evaluate Z(t) at a

given point t with great precision, but rather to determine sign changes of Z(t)

with sufficient certainty to count roots. As such, provided the cumulative errors

noted above are not so great as to prevent the determination of the sign of Z(t),

the Riemann-Siegel formula is a valuable computational tool despite its practical

shortcomings.

This section dealing with errors would not be complete without mentioning that

the floating point computation problems noted are inherent in all computations of

ζ(1/2 + it) using fixed precision arithmetic. This limitation can be overcome by

using a variable precision computation package such at the GNU bc utility, however,

so much speed is sacrificed in return for the increased accuracy that computations at

31

Chapter 3. Derivation of the Riemann-Siegel Formula

large values of t become infeasible.

32

Chapter 4

Verification of the Riemann
Hypothesis

4.1 Introduction

Since the rediscovery of the Riemann-Siegel formula in the early 1930’s, this method

has been used to verify the correctness of the Riemann Hypothesis up to very large

values of t. In this chapter, we examine the key steps involved in the verification

process.

Prior to Siegel’s work, the main method for computing values of the ζ function was

by Euler-Maclaurin summation. Though precise, the amount of work required to

compute ζ(1/2 + it) is of the same order as t. With Riemann-Siegel, the decrease in

computation time from O(t) to O
(√

t
)

allowed huge improvements over the previously

established limit that the Riemann Hypothesis was correct up to t ≈ 300. This

last result was obtained by J. Hutchinson using the more labour intensive Euler-

Maclaurin method. More recent results have shown the Riemann Hypothesis to hold

for t ≤ 5×108, while Odlyzko[5] has developed algorithms which verify the correctness

of the Riemann Hypothesis in a large region about t = 1020.

The key to the verification process is a method of A. Turing which allows one to

analytically determine the number of zeros σ+ iτ in the region 0 < σ < 1 (the critical

33

Chapter 4. Verification of the Riemann Hypothesis

strip) for 0 ≤ τ ≤ t. Once all zeros on the critical line up to height t have been

counted using Riemann-Siegel, Turing’s method is then used to verify that the zeros

found are indeed the only zeros σ + iτ in the critical strip with τ ≤ t.

4.2 Gram’s Observations

Prior to the rediscovery of the Riemann-Siegel formula, J. Gram computed the first

fifteen roots of ζ(1/2 + it) using the Euler-Maclaurin formula. In the course of his

work, Gram made the following observations:

1. <(ζ(1/2 + it)) has a tendency to be positive, while the values of =(ζ(1/2 + it))

are distributed more evenly between positive and negative values.

2. The zeros of Z(t) tend to alternate with the zeros of sin ϑ(t).

Although these observations are based purely on empirical results at low values of t,

in practice they hold true for all ranges of t tested to date. These simple observations

are the foundation upon which modern root counting strategies are based.

To illustrate the first observation above, consider the graph of the real part of

ζ(1/2 + it) for 6 × 106 ≤ t ≤ 6 × 106 + 10:

34

Chapter 4. Verification of the Riemann Hypothesis

<(ζ(1/2+it)), 6×106 ≤ t ≤ 6×106+108

−8

t

<(ζ(1/2+it)) .

Compare this to a plot of =(ζ(1/2 + it)) over the same domain:

=(ζ(1/2+it)), 6×106 ≤ t ≤ 6×106+108

−8

t

=(ζ(1/2+it)) .

35

Chapter 4. Verification of the Riemann Hypothesis

To discuss the second observation, first examine the function ϑ(t). From (3.1) we

have that ϑ′(t) ≈ 1/2 log(t/ (2π)), and for t > 7, ϑ(t) is increasing. Further, this rate

of increase is nearly constant over short intervals. The graph of ϑ(t) looks like:

61

−3.5 80

t

ϑ(t)

.

For each n ≥ −1, define the point t > 7 which satisfies ϑ(t) = nπ to be the nth Gram

point, and denote it gn. For example, the first five Gram points are approximately as

follows:

n gn

−1 9.666908077

0 17.84559954

1 23.17028270

2 27.67018222

3 31.71797995

36

Chapter 4. Verification of the Riemann Hypothesis

Returning to the second observation above, assume for the moment that the tendency

for <(ζ(1/2 + it)) to be positive continues indefinitely, and recall that ζ(1/2 + it) =

Z(t) e−iϑ(t) = Z(t) cos ϑ(t)− iZ(t) sin ϑ(t). Under the assumption that the real part of

ζ(1/2 + it) has a tendency to be positive, the signs of Z(t) and cos ϑ(t) must have a

tendency to be the same. So as cos ϑ(t) changes sign as ϑ(t) increases almost linearly

between integer multiples of π, one would expect a corresponding sign change in

Z(t) indicating at least one root of Z(t). Further, if the sign of Z(t) follows that of

cos ϑ(t), this sign change should occur approximately midway between Gram points,

supporting Gram’s second observation. Finally, because of the positive tendency of

<(ζ(1/2 + it)), one would expect that this root is the only root in the interval, and

that it has order one.

Gram’s empirical observation that zeros of Z(t) tend to alternate with the zeros of

sin ϑ(t) is known as Gram’s Law, and is stated as the inequality

(−1)n Z(gn) > 0 .

This “law” does fail eventually, and infinitely often in fact, but if true most of the

time, reduces the verification of the Riemann Hypothesis to the examination of the

more infrequent cases where Gram’s Law fails to hold. (In fact, using the methods of

the next section, one can show that if Gram’s Law held for all Gram points gn, then

the Riemann Hypothesis would follow).

The question remains as to whether the assumption about the positive tendency

of <(ζ(1/2 + it)) is valid. This is equivalent to the question of whether Gram’s Law

continues to hold for most gn. Empirically, Gram’s Law holds for about 70% of tested

cases, and depends on the tested range. One argument in support of Gram’s Law is

that at Gram points gn, the first term of the main sum in the Riemann-Siegel formula

is always 2 (−1)n, and it is unlikely that the subsequent terms which rapidly decrease

37

Chapter 4. Verification of the Riemann Hypothesis

in absolute value will reinforce one another to overcome the strong sign tendency

of the first term. These arguments are plausible, but are by no means rigorous. At

present, Gram’s Law is still a purely empirical result which serves well for the purpose

root counting.

It must be noted that Gram’s Law provides only a lower bound on the number of

roots on the critical line in a given range. That is, if Gram’s Law is satisfied at two

successive Gram points, then there is certainly at least one root of Z(t) between the

points, but there is no guarantee that there is only one root. In fact, there are cases at

very large values of t where more than one root occurs between Gram points, though

these cases are rare—see[5]. Once we have applied the methods of the next section

to determine and upper bound on the number of roots in our range, we may then

compare with the roots found following Gram’s Law to see if indeed we have located

all roots in the range.

Following the terminology used by Edwards, call a Gram point gn good if it satisfies

Gram’s Law, and bad otherwise. Define a Gram block to be an interval [gn, gn+k) such

that gn and gn+k are good Gram points but all Gram points strictly inside the interval

are bad. The process of counting roots on the critical line is then to simply count

the Gram points where Gram’s Law is satisfied, and to count the number of zeros of

Z(t) in each Gram block.

4.3 The Number of Roots to Height T

Once we have counted all roots on the critical line up to some height T, we must be

able to determine whether these are all the roots in the critical strip up to this height.

Let N(T) denote the number of roots of ζ(σ + iτ) in the region 0 < σ < 1 and

0 ≤ τ ≤ T . We would like to have a method to easily evaluate N(T) in order to

38

Chapter 4. Verification of the Riemann Hypothesis

verify the result of our root counting algorithm based on Gram’s Law. The method

currently used was developed by A. Turing and is based on results of J. Littlewood

and R. Backlund.

Riemann noted that

N(T) =
1

2πi

∫
C

ξ′(s)
ξ(s)

ds

where C is the contour

C

3
2

− 1
2

iT

as long as it is assumed that there are no zeros of ξ on the contour itself. This result

can be shown using the residue theorem and the fact that ξ is an entire function. (In

fact, it is known that there are no zeros of ξ on the two vertical sides of the contour

and on the portion of the contour on the real axis, so the necessary assumption is

that there are no zeros on the fourth remaining side.)

Using properties of ξ(s) and the functional equation, this result may be written

N(T) =
1

π
ϑ(t) + 1 +

1

π
=
(∫

C′

ζ ′(s)
ζ(s)

ds

)
(4.1)

where the contour C ′ is

39

Chapter 4. Verification of the Riemann Hypothesis

C′

1
2

3
2

1
2
+iT

iT

.

Provided <(ζ) is non-zero on the contour C ′, and since ζ(3/2) is real and positive,

the integrand in (4.1) has an anti-derivative which may be bounded to yield∣∣∣∣ 1π=
(∫

C′

ζ ′(s)
ζ(s)

ds

)∣∣∣∣ < 1

2
.

Backlund used this argument to show that under the condition that <(ζ) is non-zero

on the contour C ′, N(T) is the integer nearest π−1ϑ(T) + 1.

This method is a useful tool, but for each determination of N(T), one must prove

that no zeros of ζ lie on the contour C ′. Consider instead the function

S(T) = N(T) − ϑ(T)

π
− 1 .

Littlewood proved that
∫ T

0
S(t) dt = O(T). From Littlewood’s proof of this result,

Turing was able to show that∣∣∣∣
∫ t2

t1

S(t) dt

∣∣∣∣ ≤ 2.30 + 0.128 log

(
t2
2π

)

for 168π < t1 < t2. For certain Gram points gn, this expression will be used to

bound S(gn) and prove that N(gn) = n + 1. Turing reasoned as follows: Suppose

40

Chapter 4. Verification of the Riemann Hypothesis

that Gram’s Law is satisfied at the Gram point gm. That is, at t = gm we have

(−1)m Z(gm) > 0 . (4.2)

Then at gm we must have

S(gm) = N(gm) − ϑ(gm)

π
− 1

= N(gm) − mπ

π
− 1

= N(gm) − m − 1

and if we can conclude that S(gm) = 0 then we will know exactly how many roots

lie in the critical strip up to height gm. Let E denote the number of even order roots

(counting multiplicities) on the critical line up to height gm. Similarly, let D denote

the number of odd order roots. Finally, let F denote the number of roots in the

critical strip but not on the critical line. Then N(gm) = D + E + F , and noting that

Z(g−1) < 0, the sign of Z(gm) is then (−1) (−1)E (−1)D = (−1)D+E+1 = (−1)D+E−1.

But this must equal (−1)m by (4.2), so D+E−1 and m are either both even integers

or both odd. Further, F must be even since roots not on the critical line occur in

pairs by virtue of the functional equation ξ(s) = ξ(1 − s). Thus

S(gm) (mod 2) = N(gm) − m − 1 (mod 2)

= D + E + F − m − 1 (mod 2)

= (D + E − 1 − m) + F (mod 2)

= 0 (mod 2) ,

which shows that S(gm) must be an even integer. It remains now to show only that

|S(gm)| < 2, and this Turing did as follows.

Suppose gm and gm+k are good Gram points (that is, Gram’s Law is satisfied at these

points). For the Gram points gj, j = m + 1, ..., m + k − 1 in between, compile a

41

Chapter 4. Verification of the Riemann Hypothesis

separate list of points hj of corrections to the gj which force

(−1)j Z(gj + hj) > 0, j = m + 1, ..., k − 1 .

If gj is a Gram point which satisfies Gram’s Law, then hj = 0. For gj where Gram’s

Law is not satisfied, the hj should be chosen to be as small as possible and such that

the sequence gj + hj is strictly increasing. Now define the function L(t) as

gm gm+1+hm+1 gm+2+hm+2 gm+3+hm+3 gm+4+hm+4 . . .

L(t)

t

1

2

3

.

So each jump of L(t) at a point gj + hj indicates at least one root of Z(t) in the

interval gj−1 + hj−1 < t < gj + hj, so

N(t) ≥ N(gm) + L(t) . (4.3)

Next, define L1(t) as

42

Chapter 4. Verification of the Riemann Hypothesis

gm gm+1 gm+2 gm+3 gm+4 . . .

L1(t)

t

1

2

3

.

Here L1(t) is the Gram point counting function for Gram points larger than gm. Now

π−1ϑ(t) is an increasing function of t which coincides with π−1ϑ(gm)+L1(t) at Gram

points gm+j , j > 0. Further, the following relation between these two functions holds

for t ≥ gm:

π−1ϑ(gm) + L1(t) ≤ π−1ϑ(t) ≤ π−1ϑ(gm) + L1(t) + 1 . (4.4)

Combining the results of (4.3) and (4.4) then gives:

S(t) = N(t) − π−1ϑ(t) − 1

= N(t) − (π−1ϑ(t) + 1)

≥ N(gm) + L(t) − (π−1ϑ(t) + 1) from (4.3)

≥ N(gm) + L(t) − (π−1ϑ(gm) + L1(t) + 1 + 1) from (4.4)

= S(gm) + L(t) − L1(t) − 1 ,

whence

S(gm) ≤ S(t) + 1 − (L(t) − L1(t)) . (4.5)

43

Chapter 4. Verification of the Riemann Hypothesis

In terms of indicator functions, we may consider

L(t) − L1(t) =

k−1∑
j=1

(
I[gm+j+hm+j ,gm+j) − I[gm+j ,gm+j+hm+j)

)
,

so that integrating both sides of (4.5) from gm to gm+k yields∫ gm+k

gm

S(gm) dt ≤
∫ gm+k

gm

S(t) dt +

∫ gm+k

gm

1 dt +

∫ gm+k

gm

(L(t) − L1(t)) dt

⇒ S(gm) (gm+k − gm) ≤ 2.30 + 0.128 log
(gm+k

2π

)
+ (gm+k − gm) +

k−1∑
j=1

hm+j

⇒ S(gm) ≤ 1 + (gm+k − gm)−1

(
2.30 + 0.128 log

(gm+k

2π

)
+

k−1∑
j=1

hm+j

)
.

Note the use of Turing’s bound in the second line above. As k increases, the second

term of this last expression becomes less than one as long as the sum of the correction

terms hm+j does not become too large.

If we are able to find a k and correction terms hm+1, . . . , hm+k so that S(gm) < 2, it

will follow that S(gm) ≤ 0, whence N(gm) ≤ π−1ϑ(gm)+1 = m+1. For our purposes,

this will be enough, for as long as our root counting algorithm produces at least m+1

roots, we will have succeeded in verifying the Riemann Hypothesis up to t = gm.

It should be noted that a construction similar to that of (4.3) and (4.4) may be used to

compute a lower bound for S(gm). As such, the number of zeros up to height t = gm

can be determined using only a set of appropriately chosen points gm+j + hm+j . This

is the true beauty of Turing’s method — a small set of easily computable quantities

is sufficient for one to determine with absolute certainty the number of zeros of the

ζ function in the critical strip, and further, not a single evaluation of the ζ function

itself is necessary.

We now have all of the machinery required to implement our Riemann Hypothesis

44

Chapter 4. Verification of the Riemann Hypothesis

verification program. We have an efficient computation method for identifying roots

of the ζ function, and we have have a means of ensuring that we have located all

roots in a given region. It remains now to implement our program and that will be

the subject of the next chapter.

45

Chapter 5

Riemann-Siegel At Work

5.1 Introduction

In this chapter we discuss the results of our implementation of a Riemann Hypothesis

verification program. This verification program combines into practical application

the theory and methods of the previous chapters. We first present our raw findings

and interpret the results, and we then discuss the computer programs used in the

computation, including error considerations.

5.2 Results

The following are the results obtained by running the computer programs contained

in Appendix C and Appendix D, and following are the conclusions which follow from

these results:

1. g12 193 873 = 6 000 000.485 999

2. There are at least 12 193 874 zeros of ζ(1/2 + it) for 0 ≤ t ≤ g12 193 873.

3. There are 1 518 045 Gram blocks containing 3 317 645 of these roots.

4. The longest Gram block in the range 0 ≤ t ≤ g12 193 873 is

[g1 181 229, g1 181 235] = [698 899.370 788, 698 902.615 289].

46

Chapter 5. Riemann-Siegel At Work

5. The data for twenty Gram points used to apply Turing’s method (see

Section 4.3) is as follows:

m gm hm gm + hm Z(gm + hm)

12 193 873 6 000 000.486 0.000 6 000 000.486 −0.110

12 193 874 6 000 000.942 −0.100 6 000 000.842 0.856

12 193 875 6 000 001.399 0.000 6 000 001.399 −3.262

12 193 876 6 000 001.855 0.000 6 000 001.855 4.634

12 193 877 6 000 002.311 0.000 6 000 002.311 −8.947

12 193 878 6 000 002.768 0.000 6 000 002.768 3.350

12 193 879 6 000 003.224 0.000 6 000 003.224 −1.161

12 193 880 6 000 003.680 0.000 6 000 003.680 4.335

12 193 881 6 000 004.137 0.000 6 000 004.137 −1.663

12 193 882 6 000 004.593 0.100 6 000 004.693 0.245

12 193 883 6 000 005.049 0.000 6 000 005.049 −0.721

12 193 884 6 000 005.505 0.000 6 000 005.505 0.732

12 193 885 6 000 005.962 0.000 6 000 005.962 −0.172

12 193 886 6 000 006.418 0.000 6 000 006.418 0.513

12 193 887 6 000 006.874 0.000 6 000 006.874 −0.510

12 193 888 6 000 007.331 0.000 6 000 007.331 0.997

12 193 889 6 000 007.787 0.000 6 000 007.787 −0.225

12 193 890 6 000 008.243 0.000 6 000 008.243 1.625

12 193 891 6 000 008.700 0.000 6 000 008.700 −5.559

12 193 892 6 000 009.156 0.000 6 000 009.156 1.503

Now recall from Section 4.3 that if we define the function

S(T) = N(T) − ϑ(T)

π
− 1 ,

47

Chapter 5. Riemann-Siegel At Work

then S takes on even integer values at Gram points gm. Further, we saw that if gm and

gm+k are good Gram points, then for suitably chosen adjustments hm+1, . . . , hm+k−1,

S(gm) ≤ 1 + (gm+k − gm)−1

(
2.30 + 0.128 log

(gm+k

2π

)
+

k−1∑
j=1

hm+j

)
< 2

from which N(gm) ≤ m + 1. For our particular case, m = 12 193 873, and we

have chosen k = 19. We have also found values of hm which satisfy the required

conditions, namely that for k = 0, . . . , 19, the sequence hm+k is strictly increasing,

and (−1)m+k Z(gm+k + hm+k) > 0. For these hm we have
∑k−1

j=1 hm+j = 0.000, so that

S(gm) ≤ 1 + (gm+k − gm)−1

(
2.30 + 0.128 log

(gm+k

2π

)
+

k−1∑
j=1

hm+j

)

= 1 + (6 000 009.156 − 6 000 000.486)−1

(
2.30 + 0.128 log

(
6 000 009.156

2π

))
+ 0.000

.
= 1.469

(5.1)

That is, S(gm) < 2, and so

S(gm) = N(gm) − ϑ(gm)

π
− 1 ≤ 0

⇒ N(gm) ≤ ϑ(gm)

π
+ 1

⇒ N(gm) ≤ m + 1

Since we have located m + 1 zeros on the critical line, we may conclude that there

are exactly 12 193 874 zeros of ζ(s) for 0 < <(s) < 1, 0 ≤ =(s) ≤ 6 000 000.485 999,

and all of these are simple zeros which lie on the critical line.

48

Chapter 5. Riemann-Siegel At Work

5.3 Computation

The results presented in Section 5.2 were computed using the programs contained

in the appendices. The root and Gram block counting routines are contained in

Appendix C, while the program to produce the data needed for Turing’s method is

that of Appendix D.

The programs were written in the C programming language and compiled with the

GNU gcc compiler. The hardware used was an Intel Pentium based PC with 16 MB

RAM running at 200 MHz. The operating system was Red Hat Linux release 4.2

(Biltmore) Kernel 2.0.30.

The programs were compiled with all optimization switches turned on, however it

should be noted that the computer code is by no means optimized. The code sacri-

ficed some speed for readability and logical flow. In particular, parts of the routines

could be accelerated by reducing the number of repeated function calls, or reduc-

ing the precision in steps where high precision is not necessary, such as Gram point

calculation.

On Intel 80x86 based machines, the long double data type carries twenty digits of

floating point precision in both computation and storage. The int data type will

store integers of size up to 231 − 1 = 2 147 483 647. Data underflow and overflow are

discussed in later sections.

The main root counting computation took 24 hours and 24 minutes of dedicated CPU

time. The Turing method calculation takes only seconds to compute the data for the

selected range of 20 points.

49

Chapter 5. Riemann-Siegel At Work

5.4 Programs

In this section we will examine some of the practical points considered when coding

the programs and functions which appear in the Appendices.

Each program and function has a complete description of its use in the header, and

the code is heavily commented throughout to permit the user to trace through the

logic.

5.4.1 The Function C(n,z)

To begin, we discuss the coefficient function of the remainder terms of the Riemann-

Siegel formula, C(n,z), where n is an integer from 0 to 4 and z is a long double

variable between −1 and 1.

C(n,z) was coded by beginning with the function

Ψ(p) =
cos [2π (p2 − p − 1/16)]

cos (2πp)
, 0 ≤ p < 1

from Section 3.2 and making the substitution p = (z + 1) /2. Then

Ψ(p) = Φ(z) =
cos [(z2 + 3)π/8]

cos (πz)

and Ψ(n)(p) = 2nΦ(n)(z). These were then substituted into the expressions for Cn,

n = 0, . . . , 4, of Section 3.2, and the Taylor series of each of the Cn (as a function of

z now) were computed using the symbolic computation package Maple. The Taylor

series coefficients of the Cn were computed using thirty digit precision, and each of

the series was truncated once the absolute value of the coefficients dropped below

10−20. It is these coefficients which appear in C(n,z).

50

Chapter 5. Riemann-Siegel At Work

5.4.2 The Function Z(t,n)

The next function we discuss is Z(t,n), the main result of the Riemann-Siegel for-

mula. In this implementation, Z(t,n) takes a long double argument t and an

integer argument n. t is simply the real number at which Z is to be evaluated. n is

the number of remainder terms to use in the computation. It is particularly useful to

be able to vary n since in most cases, only the C0 and C1 term of the remainder are

necessary to identify a root, and since Z(t,n) is the core of the main root counting

program, reducing its computation time is an important consideration.

5.4.3 The Function gram(n)

Let us now move on to the function gram(n), a function which locates the nth Gram

point using Newton’s method. The nth Gram point is defined to be the solution to

the equation ϑ(t) = nπ, where n ≥ −1 and t > 7. Recall that Newton’s method will

converge to a root of a function very quickly provided the function satisfies certain

regularity conditions and the initial approximation to the root is reasonably accurate.

In this case, from (3.1) we have for large t,

ϑ(t) ≈ t

2

(
log

(
t

2π

)
− 1

)
− π

8
.

Setting log(t/ (2π)) − 1 = k and solving kt/2 − π/8 = nπ for t yields

t =
2π

k
n +

π

4k
. (5.2)

Now for 1 000 000 ≤ t ≤ 6 000 000, k ranges from approximately 11 to 13. Choosing

an average of 12 for k and ignoring the π/ (4k) term of (5.2) then gives us the starting

approximation t ≈ n/2. The resulting Newton’s method routine turns out to be very

fast, converging to eight decimal places in four steps or less in most cases.

51

Chapter 5. Riemann-Siegel At Work

5.4.4 The Function gramblock(n,m,FILE)

The last function which is of interest is gramblock(n,m,FILE), a function which

searches for the expected number of roots in the Gram block [gn, gm]. This function

uses what is essentially a bisection algorithm to count sign changes of Z(t). The

algorithm begins with a coarse partition of the Gram block, searches for sign changes,

and then partitions and searches again until either the expected number of roots are

finally found, or the limit on the number of partitions is reached. If the partition

depth is reached without finding the expected number of roots (m − n), a warning

message is written to FILE indicating that the Gram block in question should be

analyzed more carefully.

The algorithm actually proceeds in two stages. The first uses evaluations of Z(t)

with only the zeroth and first remainder terms. This first stage proceeds to no more

than a depth of ten partitions before exiting if the expected number of roots is not

found. If the root search in the first stage is unsuccessful, the second stage starts

the search anew with more accurate Z(t) values in which all five remainder terms

are used. This second stage proceeds to at most a depth of sixteen partitions before

exiting and writing the warning to the output file.

This function is our first encounter with error tolerance considerations. Namely, when

searching for sign changes, it is not enough to verify that Z(t1) > 0 at one point t1

and Z(t2) < 0 at its neighbour (in the partition) t2, or vice versa. Rather, one must

ensure that Z(t1) > ε and Z(t2) < −ε (or vice versa) where ε is the error in the

approximation of Z. In gramblock(n,m,FILE), the error tolerance used was that of

Odlyzko[5] which is based on results of Gabcke: ε(t) ≤ 0.053t−5/4 if Z(t) is computed

using the zeroth and first remainder terms.

52

Chapter 5. Riemann-Siegel At Work

5.4.5 The Main Root Counting Program

The program in Appendix C combines all of the functions discussed so far into the

main root counting algorithm. The algorithm is quite straight-forward: successive

Gram points are located, and Gram’s Law is tested at these points. If Gram’s Law

is satisfied, then the root count is augmented by one. Otherwise, the next Gram

point at which Gram’s Law is satisfied is found, thus defining a Gram block, and this

Gram block is passed to gramblock(n,m,FILE) for root counting. Once all roots in

the input range have been counted, the program exits with a report of the number of

roots found, the longest Gram block found, the number of Gram blocks found, and

the number of roots in these Gram blocks.

The testing of Gram’s Law at each Gram point is a two stage process. The first

stage is a rough calculation of Z(t) using only the zeroth and first remainder terms.

A second more accurate calculation of Z(t) is carried out only if Gram’s Law in the

form (−1)n Z(gn) > ε(gn) fails at the less accurate value of Z(t) from the first stage.

The ε(t) function used here is the same as that used in gramblock(n,m,FILE).

5.4.6 The Turing Method Program

This last program is used to determine the adjustments hm used in Turing’s method

for bounding the function S(t) (see Section 4.3). This program is a type of bisection

algorithm which locates the adjustment terms near Gram points by stepping to the left

or right of the Gram point until the hm satisfying the required conditions are found.

If a required hm in the sequence cannot be found, the search interval is partitioned

into smaller steps and the process begins again. In the current implementation, all

required hm for m = 12 193 873, 12 193 874, . . . , 12 193 892 were found in the first

partition level of step size 0.100.

53

Chapter 5. Riemann-Siegel At Work

5.5 Effective Domain of the Algorithms

With any numerical calculation algorithm, one must be able to state the range of

input which will result in meaningful output, and the Riemann-Siegel approximation

formula is no different in this respect. In the current implementation, if calculations

could be performed in infinite precision, (and consequently the Taylor series in C(n,z)

left untruncated), the results obtained for any search range would be absolutely cor-

rect. That is, the roots counted on the critical line would most definitely be roots.

That is not to say, however, that all roots on the critical line would be found—it could

happen that Z(t) just barely crosses the t axis before changing direction and crossing

back over again, and these zeros may not be detectable if Z(t) < ε(t) between the

zeros. (Here ε(t) is the error tolerance discussed in Section 5.4.4).

The algorithms break down once the size of t becomes so large that the floating

point calculations produce meaningless results. In the present case, a floating point

representation of an input value to Z(t) will have 20 − dlog10 te digits to the right of

the decimal point, and an error in the representation of O(10−20t). When this error is

used in the evaluation of each term of the main cosine sum of Z(t), the error remains

about O(10−20t), and each of these b√t/ (2π)c cosine terms are added, giving an

error of O
(
10−20t3/2

)
. So as t increases, the floating point accuracy of Z(t) drops

off rapidly, and assuming the error actually equals 10−20t3/2, the floating point error

matches the error tolerance ε(t) at t ≈ 6.5×106. Of course, ε(t) is based on using only

two of the five remainder terms in the Riemann-Siegel formula, and is likely much

smaller if determined for the case when all five remainder terms are used. Such an

error tolerance was not determined in this case, and the more conservative estimate

was used throughout.

54

Chapter 6

Conclusion and Future Work

From Riemann’s early studies of the zeta function to the modern verification algo-

rithms of Odlyzko and Schönhage[3], the Riemann-Siegel formula has been the basis

upon which these studies have been founded. Though lacking in its ability to allow

for arbitrary precision in calculations, this shortcoming in Riemann-Siegel is seldom

a problem for verification purposes, and the sheer efficiency makes it the clear choice

over other zeta function evaluation methods.

Despite the efficiency of the Riemann-Siegel formula, one eventually reaches the lim-

its of computation space and time. In the current implementation, the results (for

root counting) using twenty digit floating point precision become questionable once

t reaches the top of the tested range, around t = 6 000 000. Even the calculations

of Odlyzko[5] using twenty eight digit precision begin reaching their limit around the

1020th zero of the zeta function where t ≈ 1.5 × 1019.

The single most computationally expensive step in the computation of Z(t) is in the

evaluation of the b√t/ (2π)c terms of the main cosine sum
∑N

n=1 n−1/2 cos(ϑ(t) − t log n).

Odlyzko’s algorithms use a technique which splits this sum into a principal part which

is evaluated term by term, and an approximated part which is evaluated using sophis-

ticated approximation algorithms. This last method works well for computing many

values of Z(t), but requires a precomputation stage in order to perform the approxi-

55

Chapter 6. Conclusion and Future Work

mations of the main cosine sum. As noted in [3] , these last algorithms are no more

efficient for computing a single value of Z(t) than simple term by term evaluation of

the Riemann-Siegel formula.

What is of particular interest for single evaluations of Z(t), and hence ζ(1/2 + it), is

that
N∑

n=1

n−1/2 cos(ϑ(t) − t log n) = <
(

eiϑ(t)
N∑

n=1

(
1

n

)1/2+it
)

.

The eiϑ(t) term is straightforward to compute. The sum of the (1/n)1/2+it terms, on the

other hand, is labour intensive as before. If this sum could be approximated with an

error of the same order as that of the Riemann-Siegel formula itself, then this would

present an extension of great practical importance to our zeta function evaluation

and root counting algorithms. Further, the increased efficiency derived from such

an advance would make calculations using extended precision software feasible, and

hence extend rigorous analysis of the zeta function to heights beyond current limits.

56

Appendix A

C Functions Used in Main
Programs

This appendix lists the code for functions used by the main programs in the appen-
dices which follow.

int even(int n)
/***
* *
* function which returns -1 if argument is odd and +1 if argument is even*
* *
***/
{
if (n%2 == 0)

return(1);
else

return(-1);
}

long double theta(long double t)
/***
* *
* Approximation to theta(t)=Im{log[Pi(it/2-3/4)]}-t/2*log(pi) *
* *
***/
{
const long double pi = 3.1415926535897932385L;
return(t/2.0L*logl(t/2.0L/pi) - t/2.0L - pi/8.0L

+ 1.0L/48.0L/t + 7.0L/5760.0L/t/t/t);
}

57

Appendix A. C Functions Used in Main Programs

long double gram(int n)
/***
* *
* Function which locates n^th Gram point using Newton’s Method. *
* *
***/
{
long double t_n; /* n^th approximation */
long double t_n1; /* (n+1)^st approx. */

const long double pi = 3.1415926535897932385L;
t_n=0.0L;
t_n1=0.5*n+20.0L;

while(fabsl(t_n-t_n1) > 0.00000001L)
{
t_n=t_n1;
t_n1 = t_n-(t_n*log(t_n/pi/2.0L)/2.0L-t_n/2.0L-

pi/8.0L+1.0L/t_n/48.0L+7.0L/5760.0L/(t_n*t_n*t_n)-
((long double) n)*pi)

/(log(t_n/pi/2.0L)/2.0L-1.0L/(t_n*t_n)/48.0L-
7.0L/1920.0L/(t_n*t_n*t_n*t_n));

}
return(t_n1);

}

58

Appendix A. C Functions Used in Main Programs

long double C(int n, long double z)
/***
* *
* Coefficients of remainder terms; n can range from 0 to 4. *
* *
***/
{
if (n==0)

return(.38268343236508977173L * powl(z, 0.0L)
+.43724046807752044936L * powl(z, 2.0L)
+.13237657548034352332L * powl(z, 4.0L)
-.01360502604767418865L * powl(z, 6.0L)
-.01356762197010358089L * powl(z, 8.0L)
-.00162372532314446528L * powl(z,10.0L)
+.00029705353733379691L * powl(z,12.0L)
+.00007943300879521470L * powl(z,14.0L)
+.00000046556124614505L * powl(z,16.0L)
-.00000143272516309551L * powl(z,18.0L)
-.00000010354847112313L * powl(z,20.0L)
+.00000001235792708386L * powl(z,22.0L)
+.00000000178810838580L * powl(z,24.0L)
-.00000000003391414390L * powl(z,26.0L)
-.00000000001632663390L * powl(z,28.0L)
-.00000000000037851093L * powl(z,30.0L)
+.00000000000009327423L * powl(z,32.0L)
+.00000000000000522184L * powl(z,34.0L)
-.00000000000000033507L * powl(z,36.0L)
-.00000000000000003412L * powl(z,38.0L)
+.00000000000000000058L * powl(z,40.0L)
+.00000000000000000015L * powl(z,42.0L));

else if (n==1)
return(-.02682510262837534703L * powl(z, 1.0L)

+.01378477342635185305L * powl(z, 3.0L)
+.03849125048223508223L * powl(z, 5.0L)
+.00987106629906207647L * powl(z, 7.0L)
-.00331075976085840433L * powl(z, 9.0L)
-.00146478085779541508L * powl(z,11.0L)
-.00001320794062487696L * powl(z,13.0L)
+.00005922748701847141L * powl(z,15.0L)
+.00000598024258537345L * powl(z,17.0L)
-.00000096413224561698L * powl(z,19.0L)
-.00000018334733722714L * powl(z,21.0L)
+.00000000446708756272L * powl(z,23.0L)
+.00000000270963508218L * powl(z,25.0L)
+.00000000007785288654L * powl(z,27.0L)

59

Appendix A. C Functions Used in Main Programs

-.00000000002343762601L * powl(z,29.0L)
-.00000000000158301728L * powl(z,31.0L)
+.00000000000012119942L * powl(z,33.0L)
+.00000000000001458378L * powl(z,35.0L)
-.00000000000000028786L * powl(z,37.0L)
-.00000000000000008663L * powl(z,39.0L)
-.00000000000000000084L * powl(z,41.0L)
+.00000000000000000036L * powl(z,43.0L)
+.00000000000000000001L * powl(z,45.0L));

else if (n==2)
return(+.00518854283029316849L * powl(z, 0.0L)

+.00030946583880634746L * powl(z, 2.0L)
-.01133594107822937338L * powl(z, 4.0L)
+.00223304574195814477L * powl(z, 6.0L)
+.00519663740886233021L * powl(z, 8.0L)
+.00034399144076208337L * powl(z,10.0L)
-.00059106484274705828L * powl(z,12.0L)
-.00010229972547935857L * powl(z,14.0L)
+.00002088839221699276L * powl(z,16.0L)
+.00000592766549309654L * powl(z,18.0L)
-.00000016423838362436L * powl(z,20.0L)
-.00000015161199700941L * powl(z,22.0L)
-.00000000590780369821L * powl(z,24.0L)
+.00000000209115148595L * powl(z,26.0L)
+.00000000017815649583L * powl(z,28.0L)
-.00000000001616407246L * powl(z,30.0L)
-.00000000000238069625L * powl(z,32.0L)
+.00000000000005398265L * powl(z,34.0L)
+.00000000000001975014L * powl(z,36.0L)
+.00000000000000023333L * powl(z,38.0L)
-.00000000000000011188L * powl(z,40.0L)
-.00000000000000000416L * powl(z,42.0L)
+.00000000000000000044L * powl(z,44.0L)
+.00000000000000000003L * powl(z,46.0L));

else if (n==3)
return(-.00133971609071945690L * powl(z, 1.0L)

+.00374421513637939370L * powl(z, 3.0L)
-.00133031789193214681L * powl(z, 5.0L)
-.00226546607654717871L * powl(z, 7.0L)
+.00095484999985067304L * powl(z, 9.0L)
+.00060100384589636039L * powl(z,11.0L)
-.00010128858286776622L * powl(z,13.0L)
-.00006865733449299826L * powl(z,15.0L)
+.00000059853667915386L * powl(z,17.0L)
+.00000333165985123995L * powl(z,19.0L)

60

Appendix A. C Functions Used in Main Programs

+.00000021919289102435L * powl(z,21.0L)
-.00000007890884245681L * powl(z,23.0L)
-.00000000941468508130L * powl(z,25.0L)
+.00000000095701162109L * powl(z,27.0L)
+.00000000018763137453L * powl(z,29.0L)
-.00000000000443783768L * powl(z,31.0L)
-.00000000000224267385L * powl(z,33.0L)
-.00000000000003627687L * powl(z,35.0L)
+.00000000000001763981L * powl(z,37.0L)
+.00000000000000079608L * powl(z,39.0L)
-.00000000000000009420L * powl(z,41.0L)
-.00000000000000000713L * powl(z,43.0L)
+.00000000000000000033L * powl(z,45.0L)
+.00000000000000000004L * powl(z,47.0L));

else
return(+.00046483389361763382L * powl(z, 0.0L)

-.00100566073653404708L * powl(z, 2.0L)
+.00024044856573725793L * powl(z, 4.0L)
+.00102830861497023219L * powl(z, 6.0L)
-.00076578610717556442L * powl(z, 8.0L)
-.00020365286803084818L * powl(z,10.0L)
+.00023212290491068728L * powl(z,12.0L)
+.00003260214424386520L * powl(z,14.0L)
-.00002557906251794953L * powl(z,16.0L)
-.00000410746443891574L * powl(z,18.0L)
+.00000117811136403713L * powl(z,20.0L)
+.00000024456561422485L * powl(z,22.0L)
-.00000002391582476734L * powl(z,24.0L)
-.00000000750521420704L * powl(z,26.0L)
+.00000000013312279416L * powl(z,28.0L)
+.00000000013440626754L * powl(z,30.0L)
+.00000000000351377004L * powl(z,32.0L)
-.00000000000151915445L * powl(z,34.0L)
-.00000000000008915418L * powl(z,36.0L)
+.00000000000001119589L * powl(z,38.0L)
+.00000000000000105160L * powl(z,40.0L)
-.00000000000000005179L * powl(z,42.0L)
-.00000000000000000807L * powl(z,44.0L)
+.00000000000000000011L * powl(z,46.0L)
+.00000000000000000004L * powl(z,48.0L));

}

61

Appendix A. C Functions Used in Main Programs

long double Z(long double t, int n)
/***
* *
* The Z(t) function from the Riemann-Siegel formula. This functions takes*
* an additional integer argument which is the number of terms to use in *
* the remainder. This integer argument can vary from 0 to 4 which *
* corresponds to the first through fifth remainder terms. *
* *
***/
{
long double ZZ; /* the result */
long double tt; /* theta(t) */
long double p; /* fractional part of sqrt(t/(2.0*pi))*/
long double theta(long double); /* theta function */
long double C(int,long double); /* coefficient of (2*pi/t)^(k*0.5) */
long double R; /* remainder term */
int even(int); /* -1,+1 parity function */
int j; /* summation index for Z(t) function */
int k; /* summation index for remainder term */
int N; /* integer part of sqrt(t/(2.0*pi)) */

const long double pi = 3.1415926535897932385L; /* initializations... */
ZZ = 0.0L; /* */
R = 0.0L; /* */
j = 1; /* */
k = 0; /* */
N = sqrtl(t/(2.0L * pi)); /* */
p = sqrtl(t/(2.0L * pi)) - N; /* */
tt = theta(t); /* */

while (j <= N) /* add up terms of */
{ /* main series... */
ZZ = ZZ + 1.0L/sqrtl((long double) j) /* */

* cosl(fmodl(tt /* */
-t*logl((long double) j), /* */
2.0L*pi)); /* */

++j; /* */
} /* */

ZZ = 2.0L * ZZ; /* */

62

Appendix A. C Functions Used in Main Programs

while (k <= n) /* add up terms of */
{ /* remainder... */
R = R + C(k,2.0L*p-1.0L) /* */

* powl(2.0L*pi/t, /* */
((long double) k)*0.5L); /* */

++k; /* */
} /* */

R = even(N-1) * powl(2.0L * pi / t,0.25L) * R; /* */

return(ZZ + R);
}

63

Appendix A. C Functions Used in Main Programs

int gramblock(int n, int m, FILE *outfile)
/***
* *
* Function which searches for the expected number of roots between Gram *
* points n and m. Warnings of possible missed roots along with the *
* Gram block are written to outfile for further analysis *
* *
***/
{
int num; /* root counter */
int p; /* partitions between gram points */
int j; /* index of current Gram point */
int k; /* index of current partition point */

long double Z(long double,int); /* Riemann-Siegel Z function */
long double gram(int); /* Gram point evaluation function */
long double gp1; /* Gram interval partition point */
long double gp2; /* Gram interval partition point */

p = 1;
num = 0;

while (num < (m - n) && p < 1024) /* while no. roots */
{ /* less than */

/* expected... */

num = 0; /* refine inter- */
p = 2*p; /* Gram point */
j = n; /* partition; go to */
gp2 = graham(j); /* beginning of */

/* Gram block...

while (j <= (m-1)) /* for each Gram pt. */
{ /* except the last... */

k = 0; /* step through */
while (k <= (p-1)) /* successive */

{ /* partition points...*/

gp1 = gp2; /* determine */
/* coordinates of */

gp2 = gram(j) /* adjacent partition */
* (1.0L-((long double) (k+1)) /* points... */
/ ((long double) p)) /* */
+ /* */

64

Appendix A. C Functions Used in Main Programs

gram(j+1) /* */
* ((long double) (k+1)) /* */
/ ((long double) p); /* */

if (Z(gp1,1) /* roughly evaluate */
> 0.053L/powl(gp1,1.25L) /* Z(t) at adjacent */
&& /* partition points...*/
Z(gp2,1) /* */

< -0.053L/powl(gp2,1.25L)) /* if the signs */
++num; /* differ increment */

else if (Z(gp1,1) /* the root count... */
< -0.053L/powl(gp1,1.25L) /* */
&& /* */

Z(gp2,1) /* */
> 0.053L/powl(gp2,1.25L)) /* */

++num; /* */

++k; /* next partition pt. */
}

++j; /* next Gram point */
}

}

p = 1; /* reset partition */
/* size...

while (num < (m - n)) /* if no. roots still */
{ /* < expected, start */

/* over using more */
/* accurate Z(t)... */

num = 0; /* refine inter- */
p = 2*p; /* Gram point */
j = n; /* partition; go to */
gp2 = graham(j); /* beginning of */

/* Gram block */

while (j <= (m-1)) /* for each Gram pt. */
{ /* except the last... */

k = 0; /* step through */
while (k <= (p-1)) /* successive */

{ /* partition points...*/

gp1 = gp2; /* determine */

65

Appendix A. C Functions Used in Main Programs

/* coordinates of */
gp2 = gram(j) /* adjacent partition */

* (1.0L-((long double) (k+1)) /* points... */
/ ((long double) p)) /* */
+ /* */
gram(j+1) /* */

* ((long double) (k+1)) /* */
/ ((long double) p); /* */

if (Z(gp1,4) /* accurately */
> 0.053L/powl(gp1,1.25L) /* evaluate Z(t) at */
&& /* adjacent partition */
Z(gp2,4) /* points... */

< -0.053L/powl(gp2,1.25L)) /* */
++num; /* if the signs */

else if (Z(gp1,4) /* differ, increment */
< -0.053L/powl(gp1,1.25L) /* the root count... */
&& /* */

Z(gp2,4) /* */
> 0.053L/powl(gp2,1.25L)) /* */

++num; /* */

++k; /* next partition pt. */
}

++j; /* next Gram point */
}
if (p == 65536) break; /* break if partition */

} /* depth getting too */
/* deep */

if (num < (m - n)) /* if unable to find */
{ /* expected number of */
fprintf(outfile, /* roots, write */

"Partition depth reached in" /* warning to output */
" Gram block [%d,%d],\n" /* file */
" possible violation of" /* */
" Rossers rule\n",n,m); /* */

}
return(num);

}

66

Appendix B

C Program for Simple Evaluation
of Z(t)

The following program produces (t, Z(t)) pairs appropriate for input to a plotting utility.

/***
* *
* Program to implement the Riemann-Siegel formula to compute *
* approximations to Z(t). *
* *
* Given the input LOWER, UPPER and NUMSAMPLES, the program computes *
* NUMSAMPLES coordinate pairs (t,Z(t)) for LOWER <= t <= UPPER and *
* writes the results to the standard output. *
* *
* Five of the error terms of the approximation are used for all *
* calculations. *
* *
***/

#include <stdio.h>
#include <math.h>

#define LOWER 6000000.0L /* lower bound of t domain */
#define UPPER 6000010.0L /* upper bound of t domain */
#define NUMSAMPLES 10000 /* number of samples to compute */

/**/

67

Appendix B. C Program for Simple Evaluation of Z(t)

int main()
{
long double t1 ; /* start of plotted interval */
long double t2 ; /* end of plotted interval */
long double t ; /* sample to compute */
long double Z(long double,int); /* Riemann-Siegel Z(t) function */

int samples ; /* number samples to compute */
int sampleindex; /* index of sample being computed */

t1 = LOWER ;
t2 = UPPER ;
samples = NUMSAMPLES - 1;
sampleindex = 0 ;

while (sampleindex <= samples)
{
t = t1 + 1.0L*sampleindex/samples*(t2 - t1);
printf("%Lf\t%16.12Lf\n",t,Z(t,4));
++sampleindex;

}

return(0);
}

68

Appendix C

C Program for Counting Roots of
Z(t)

The following root counting program uses the Riemann-Siegel formula to establish the ex-
istence of roots of Z(t) in the given input range.

/***
* *
* Program to verify the Riemann hypothesis up to Gram point END. The *
* main routine uses the Riemann-Siegel formula for fast evaluation of *
* the zeta function. *
* *
* This program counts the number of zeros of the Riemann zeta function *
* between Gram points BEGIN and END. The program establishes the *
* existence of a zero with complete certainty, and thus produces a lower *
* bound on the number of zeros in the search range. There is the *
* possibility that a zero will be missed in the case where |Z(t)| is *
* less than the error tolerance, and hence the sign of Z(t) cannot be *
* determined with certainty. In these situations, a warning is written *
* to the RESULTFILE indicating that the questionable region should be *
* examined with more accuracy. *
* *
* Output to the RESULTFILE consists of the count of roots found, the *
* number of Gram blocks found, the total number of roots within these *
* Gram blocks, and the longest and shortest Gram blocks found. *
* *
***/

#include <stdio.h>
#include <math.h>

69

Appendix C. C Program for Counting Roots of Z(t)

#define BEGIN -1 /* initial Gram point */
#define END 12193873 /* final Gram point */
#define RESULTFILE "results.txt" /* output file for results */

/**/

int main()
{
FILE *results_file; /* output file for results */

long double Z(long double,int); /* Riemann-Siegel Z(t) function */
long double gram(int); /* Gram point location function */
int gramblock(int,int,FILE *); /* Gram block root count function */
int even(int); /* -1,+1 parity function */

int gpt_final; /* index of final Gram point */
int gpt_indx; /* index of current Gram point */
int tot_roots; /* root counter */

int gblock_start; /* current Gram block lower index */
int gblock_end; /* current Gram block upper index */
int gblock_roots; /* roots in current Gram block */
int tot_gblocks; /* total Gram blocks found */
int tot_gblock_roots; /* total Gram block roots found */
int l_gblock_start; /* longest Gram block left index */
int l_gblock_end; /* longest Gram block right index */

gpt_indx = BEGIN; /* initializations */
gpt_final = END; /* */
tot_roots = 0; /* */
gblock_roots = 0; /* */
tot_gblocks = 0; /* */
tot_gblock_roots = 0; /* */
l_gblock_start = -1; /* */
l_gblock_end = -1; /* */

results_file = fopen(RESULTFILE, "w"); /* open output file */

while (gpt_indx < gpt_final) /* while not at last */
{ /* Gram point... */

++gpt_indx; /* go to next one */

if (even(gpt_indx)*Z(gram(gpt_indx),1) /* if Gram’s Law */

70

Appendix C. C Program for Counting Roots of Z(t)

> 0.053L/powl(gram(gpt_indx),1.25L)) /* satified, */
++tot_roots; /* increment total */

/* number of roots... */

else /* otherwise, try */
if (even(gpt_indx)*Z(gram(gpt_indx),4) /* more precise */
> 0.053L/powl(gram(gpt_indx),1.25L)) /* calculation of */

++tot_roots; /* Z(t)... */

else /* still not */
{ /* satisfied? then we */

/* have a Gram */
/* block... */

gblock_start = gpt_indx - 1; /* identify left */
/* index of block... */

while (even(gpt_indx) /* test succeeding */
Z(gram(gpt_indx),1) / Gram points */

<= /* until Gram’s Law */
0.053L/powl(gram(gpt_indx), /* once again */

1.25L)) /* satisfied... */
++gpt_indx; /* */

gblock_end = gpt_indx; /* identify right */
/* index of block */

gblock_roots = /* determine number */
gramblock(gblock_start,gblock_end, /* of roots inside */

results_file); /* the Gram block... */

++tot_gblocks; /* increment root and */
tot_gblock_roots += gblock_roots; /* Gram block */
tot_roots += gblock_roots; /* counters */

if (gblock_end-gblock_start /* determine if the */
> l_gblock_end-l_gblock_start) /* new Gram block */
{ /* is longest so far */
l_gblock_start = gblock_start; /* */
l_gblock_end = gblock_end; /* */

} /* */
}

if (gpt_indx%1000 == 0) /* write progress */
printf("%d roots located to Gram point" /* message to screen */

" %d\n", /* */

71

Appendix C. C Program for Counting Roots of Z(t)

tot_roots,gpt_indx); /* */
}

fprintf(results_file,"Number of roots to" /* write results to */
" Gram point N = %d is %d\n", /* output file: */
gpt_indx,tot_roots); /* ...total roots, */

fprintf(results_file,"Number of Gram" /* */
" blocks found is %d\n", /* ...total Gram */
tot_gblocks); /* blocks, */

fprintf(results_file,"Total number of roots" /* */
" in these %d Gram blocks is %d\n", /* ...total roots in */
tot_gblocks,tot_gblock_roots); /* Gram blocks, */

fprintf(results_file,"Longest Gram block" /* */
" found is [%d, %d]\n", /* ...longest Gram */
l_gblock_start,l_gblock_end); /* block */

fclose(results_file); /* close output file */

return(0);
}

72

Appendix D

C Program for Locating Turing
Adjustments

This program searches for the adjustments hm used in Turing’s method for determining the
number of roots in the critical strip up to height T .

/***
* *
* Program to find the adjustments h_m used in Turing’s method for *
* bounding S(g_n)= N(g_n) - theta(g_n) / pi - 1. *
* *
* For g_END, the program finds values of h_(END-SAMPLES+1), ..., h_END *
* such that *
* *
* 1.) g_(END-SAMPLES+1)+h_(END-SAMPLES+1), ..., g_END+h_END is *
* strictly increasing, and *
* *
* 2.) (-1)^n*Z(g_n+h_n) > 0 for n = END-SAMPLES+1, ..., END. *
* *
* Output to the RESULTFILE consists of n, g_n, h_n, g_n+h_n, Z(g_n+h_n), *
* for n = END-SAMPLES+1, ..., END. *
* *
***/

#include <stdio.h>
#include <math.h>

#define END 12193892 /* final Gram point */
#define SAMPLES 20 /* number of samples to compute */
#define RESULTFILE "turing.txt" /* output file for results */

73

Appendix D. C Program for Locating Turing Adjustments

/**/

int main()
{
FILE *results_file; /* output file for results */

long double Z(long double,int); /* Riemann-Siegel Z(t) function */
long double gram(int); /* Gram point location function */
long double g[SAMPLES]; /* list of Gram points */
long double h[SAMPLES]; /* list of adjustment terms */
long double h_total; /* total of adjustment terms */
long double step; /* step size for adjustment terms */
int g_initial; /* index of first Gram point sample */
int even(int); /* -1,1 parity function */
int num_samples; /* number of samples for test */
int j; /* loop index */
int k; /* loop index */
int n; /* loop index */
int m; /* loop index */

num_samples = SAMPLES; /* */
j = 0; /* */
k = 0; /* */
m = 0; /* initializations... */
g_initial = END - num_samples + 1; /* */
step = 0.1L; /* */
h_total = 0.0L; /* */

results_file = fopen(RESULTFILE, "w"); /* open output file...*/

while (j < num_samples) /* evaluate Gram */
{ /* points in range; */
g[j] = gram(g_initial+j); /* initialize */
h[j] = 0.0L; /* adjustment */
++j; /* vector... */

} /* */

while (k < num_samples) /* for each Gram */
{ /* point ... */
n = 0; /* set number of */

/* steps to 0... */

while (even(g_initial+k)*Z(g[k]-n*step,4) /* keep stepping one */
< 0.053L/powl(g[k]-n*step,1.25L) /* step to both the */

&& /* left and right of */

74

Appendix D. C Program for Locating Turing Adjustments

even(g_initial+k)*Z(g[k]+n*step,4) /* g_n until */
< 0.053L/powl(g[k]+n*step,1.25L)) /* (-1)^n*Z(g_n+h_n)>0*/

{ /* is satisfied, */
++n; /* where */

} /* h_n = +/- n*step...*/

if (even(g_initial+k)*Z(g[k]-n*step,4) /* store the minimal */
> 0.053L/powl(g[k]-n*step,1.25L)) /* adjustment found */

h[k] = -n*step; /* in the h[] vector */
else /* */

h[k] = n*step; /* */

h_total += h[k]; /* increase adj. total*/

if ((k > 0) && (g[k]+h[k]<=g[k-1]+h[k-1])) /* if the sequence */
{ /* g_k+h_k so far is */

h_total = 0.0L; /* not strictly */
step = step/2.0L; /* increasing, reduce */
k = 0; /* the step size and */

} /* start over, */
else ++k; /* otherwise go to */

/* the next Gram pt */
}

while (m < num_samples)
{ /* write out the */
fprintf(results_file, /* results */

"g[%d]=%14.6Lf," /* */
"h[%d]=%14.6Lf," /* */
"g[%d]+h[%d]=%14.6Lf," /* */
"Z(g[%d]+h[%d])=%14.6Lf\n", /* */
g_initial+m,g[m], /* */
g_initial+m,h[m], /* */
g_initial+m,g_initial+m, /* */
g[m]+h[m], /* */
g_initial+m,g_initial+m, /* */
Z(g[m]+h[m],4)); /* */

++m; /* */
} /* */

fprintf(results_file,"h_total = %14.6Lf\n", /* */
h_total); /* */

fclose(results_file); /* close output file */

return(0);
}

75

Bibliography

[1] H. M. Edwards, Riemann’s Zeta Function, Academic Press, 1974.

[2] J. Van de Lune, H.J.J. te Riele, and D.T. Winter, On the Zeros of the Riemann Zeta
Function in the Critical Strip. IV., Math. Comp. 46. (1986), 667-681.

[3] A.M. Odlyzko and A.Schönhage, Fast Algorithms for Multiple Evaluations of the Rie-
mann Zeta Function, Trans. Amer. Math. Soc. 309 (1988), 797-809.

[4] A. M. Odlyzko, Analytic computations in number theory, Mathematics of Computation
1943-1993: A Half-Century of Computational Mathematics, W. Gautschi (ed.), Amer.
Math. Soc., Proc. Symp. Appl. Math. #48 (1994), pp. 451-463.

[5] A.M. Odlyzko, The 1020-th Zero of the Riemann Zeta Function
and 175 Million of its Neighbors, Manuscript in Preparation (see
http://www.research.att.com/~amo/unpublished/index.html.)

[6] E.C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., Oxford Univer-
sity Press, 1986.

76

