## Snowball Earth:

Jeff Lewis
lewisj@viu.ca

## What is the Snowball Earth Theory?

- Entire planet was covered by snow and ice for prolonged periods between 750 Ma and 635 Ma



## What is the Snowball Earth Theory?

- It was proposed to explain the paradox of tropical glaciation at sea level in the Neoproterozoic


Geologic Time Scale


## What is the geological evidence?

1. Glacial deposits
2. Cap carbonates
3. Banded iron formations (BIF)
4. Timing of early life



## 1. Glacial deposits

- Distributed on all continents
- Tidal rhythmites indicate that they formed at sea level


Fortnightly tidal bundles ( $N$, neaps) in Elatina Fm synglacial siltstone, South Australia. Note syn-sedimentary fold with onlapping laminae (arrows). Low-inclination remnant magnetization carried by detrital hematite was acquired as folding progressed.

distribution of glacial deposits

(Hoffman and Schrag 2000)

## 1. Glacial deposits

- Paleomagnetic data suggest they formed near the equator, none poleward of 60 degrees


## Snowball Earth



## Paleomagnetism



Assuming a time-averaged geocentric axial dipole: tan inclination = $2 \boldsymbol{t a n}$ latitude

Histograms of occurrences of glacial or glacial marine deposits according to age and paleolatitude. Evans (2003) Tectonophysics 375, 353-385.

## 1. Glacial deposits

- Multiple magnetic reversals indicate that glaciation lasted several hundreds of thousands, to a few million years


Principal of the 'reversal test'. Stratigraphically coherent polarity reversals are assumed to represent reversals of the geomagnetic field, contemporaneous with sedimentation. Elatina Fm records up to six polarity reversals.

## 2. Cap carbonates



- Warm water deposit
- Associated with most Neoproterozoic glacial deposits
- Can be hundreds of meters thick


2. Cap carbonates


- Aragonite fans indicate rapid deposition under hot temperatures


## 3. Banded Iron Formation (BIF)

- Absent from the geologic record for a billion years

If $\mathrm{O}_{2}$ is absent, iron is soluble as ferrous $\left(\mathrm{Fe}^{2+}\right)$ ion. If $\mathrm{O}_{2}$ is present, iron is insoluble as ferric $\left(\mathrm{Fe}^{3+}\right)$ ion.


Age (billions of years before present)

## 3. Banded Iron Formation (BIF)



If $\mathrm{O}_{2}$ is absent, iron is soluble as ferrous $\left(\mathrm{Fe}^{2+}\right)$ ion. If $\mathrm{O}_{2}$ is present, iron is insoluble as ferric $\left(\mathrm{Fe}^{3+}\right)$ ion.


Geologic Time Scale

4. Timing of early life

- DNA calculations put the beginning of multicellular life near the end of the Snowball period


## Snowball Earth

~750-635 Ma

## Mechanism: runaway icehouse as advocated by Paul Hoffman



## Runaway icehouse as advocated by Paul Hoffman

How to get out of the snowball?

Runaway icehouse as advocated by Paul Hoffman
How to get out of the snowball?

- The atmosphere is cut off from the ocean (no drawdown of $\mathrm{CO}_{2}$ )
- Volcanic outgassing of $\mathrm{CO}_{2}$ accumulates in the atmosphere
- It would take $\sim 10$ million years to overcome the ice house
- Would need roughly 350 times present $\mathrm{CO}_{2}$ levels ( $\sim 0.12$ bar)


What are the strengths and weaknesses of the Snowball Earth Theory?

## 1. Glacial deposits

## Strengths

- Glaciation on all continents
- Glaciation at sea level
- Glaciation near the equator

(Hoffman and Schrag 2000)
- The glaciations could have lasted for up to 10 million years


## Weaknesses



## Gaskiers

- Glaciation is not global


## Marinoan

- Glaciation is global and synchronous

Sturtian

- Glaciation is global but not synchronous


## 1. Glacial deposits

## Weaknesses

## Sturtian: dispersed continents

## Rodinia breakup



Continents with paleomagnetic data ( $\sim 750$ million years ago)

## Weaknesses

Marinoan: continents at higher latitudes


## Strengths



## 2. Cap carbonates

Mackenzie Mtns, NW Canada

3. Banded Iron Formation (BIF) Strengths

## Snowball earth: anoxic ocean



## 3. Banded Iron Formation



Gaskiers

- No BIFs


Sturtian

- BIFs


Geologic Time Scale

4. Timing of early life

## Strengths

- After Snowball Earth there would be new habitats for life to radiate into


## Snowball Earth

~750-635 Ma

## Strengths




## Weaknesses

 4. Timing of early lifeHow could photosynthetic life survive globally ice covered oceans?


## Conclusions

Possibly two Snowball Earth episodes ( 750 Ma and 635 Ma )

## Sturtian ( 750 Ma ) <br> Equatorial glacial deposits Equatorial continents Thick cap carbonates Many BIFs Glaciation not synchronous

Weakness of Snowball Earth: photosynthetic life
Strength of Snowball Earth: a single mechanism can explain many anomalous deposits

## For more information:

## snowballearth.org

## How do we know how long the Snowball Earth events lasted?

From simple models, it was calculated that 0.12 Bar (or $120,000 \mathrm{ppm}$ ) of $\mathrm{CO}_{2}$ would be required to melt a completely ice covered Earth.

The present rate of volcanic outgassing of $\mathrm{CO}_{2}$ ranges between:
$2.7 \times 10^{12} \mathrm{~mol} / \mathrm{y}$ to $5.4 \times 10^{12} \mathrm{~mol} / \mathrm{y}$
How do we change mol/y into something more useful?

$$
\mathrm{CO}_{2}=1 \mathrm{C} \text { atom }(12 \mathrm{~g} / \mathrm{mol}) \text { and } 20 \text { atoms }(2 \times 16 \mathrm{~g} / \mathrm{mol})=44 \mathrm{~g} / \mathrm{mol}
$$



## How do we know how long the Snowball Earth events lasted?

From simple models, it was calculated that 0.12 Bar (or 120,000 ppm) of $\mathrm{CO}_{2}$ would be required to melt a completely ice covered Earth.

The present rate of volcanic outgassing of $\mathrm{CO}_{2}$ ranges between: $2.7 \times 10^{12} \mathrm{~mol} / \mathrm{y}$ to $5.4 \times 10^{12} \mathrm{~mol} / \mathrm{y}$

How do we change mol/y into something more useful?
$\mathrm{CO}_{2}=1 \mathrm{C}$ atom $(12 \mathrm{~g} / \mathrm{mol})$ and 20 atoms $(2 \times 16 \mathrm{~g} / \mathrm{mol})=44 \mathrm{~g} / \mathrm{mol}$
So $2.7 \times 10^{12} \mathrm{~mol} / \mathrm{y}$ times $44 \mathrm{~g} / \mathrm{mol}=1.19 \times 10^{14} \mathrm{~g} / \mathrm{y}$
This is also the equivalent of $1.19 \times 10^{11} \mathrm{~kg} / \mathrm{y}$ or $0.119 \mathrm{Gt} / \mathrm{y}$

## Lets consider the current level of $\mathrm{CO}_{2}$ in the atmosphere

$\left(10^{6} \mathrm{~kg}\right)$ Megatonne $M t=\left(10^{12} \mathrm{~kg}\right)$ Teragram Tg
$\left(10^{9} \mathrm{~kg}\right)$ Gigatonne $\mathrm{G} \dagger=\left(10^{15} \mathrm{~kg}\right)$ Petagram Pg
How do we convert Gigatonnes of $\mathrm{CO}_{2}$ into ppm or visa versa?
First, what does ppm mean?
ppm is parts per million (and usually per volume)
Consider today's atmospheric concentration of $\mathrm{CO}_{2}=385 \mathrm{ppm}$ (and rising)
We can convert this volume mixing ratio to the total mass of $\mathrm{CO}_{2}$ in the atmosphere by multiplying this number by the mass of the atmosphere weighted by the relative mass of $\mathrm{CO}_{2}$ atoms compared to air molecules (to simplify we assume that air is composed of $80 \% \mathrm{~N}_{2}$ and $20 \% \mathrm{O}_{2}$ ):

We next need to calculate the mass of the atmosphere.

## How do we calculate the mass of the atmosphere?

Pressure is Force per Area: $P=F / A$ and Force is Mass times acceleration: $F=m \times g$

So... we can rearrange the equations to solve for mass:

$$
m=(P \times A) / g \quad \text { Area of a sphere }(A)=4 \times \pi \times r^{2}
$$

Where: global average surface pressure $(P)=100000 \mathrm{~Pa}(1000 \mathrm{hPa}$ or mb )
the radius of the Earth $(r)=6370 \mathrm{~km}\left(6.37 \times 10^{6} \mathrm{~m}\right)$ the force of gravity $(\mathrm{g})=9.8 \mathrm{~m} / \mathrm{s}^{2}$

So the mass of the atmosphere is:

$$
\begin{aligned}
m= & (100000 \mathrm{~Pa})(4)(3.14)(6370000 \mathrm{~m})^{2} / 9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& =5.2 \times 10^{18} \mathrm{~kg}
\end{aligned}
$$

## How do we convert ppm to G†?

Now we can convert this volume mixing ratio to the total mass of $\mathrm{CO}_{2}$ in the atmosphere by multiplying this number by the mass of the atmosphere weighted by the relative mass of $\mathrm{CO}_{2}$ atoms compared to air molecules (for simplification we assume that air is composed of $80 \% \mathrm{~N}_{2}(28 \mathrm{~g} / \mathrm{mol})$ and $\left.20 \% 32 \mathrm{~g} / \mathrm{mol}\right) \mathrm{O}_{2}$ ):

$$
\begin{gathered}
\left(385 \times 10^{-6}\right) \times 44 /(0.8 \times 28+0.2 \times 32) \times 5.2 \times 10^{18} \mathrm{~kg}=3059 \times 10^{12} \mathrm{kgCO}_{2} \\
=3059 \mathrm{GtCO}_{2}
\end{gathered}
$$

Where:
$44 \mathrm{~g} / \mathrm{mol}$ is the mass of a unit of carbon
$28 \mathrm{~g} / \mathrm{mol}$ is the mass of $\mathrm{N}_{2}$
$32 \mathrm{~g} / \mathrm{mol}$ is the mass of $\mathrm{O}_{2}$
(To get the mass of Carbon, divide by 44 and multiply by $12=834 \mathrm{Gt} \mathrm{C}$ )
So to simplify everything, to convert 385 ppm to $\mathrm{Gt} \mathrm{CO}_{2}$, multiply by 7.8 to convert $\mathrm{Gt} \mathrm{CO}_{2}$ to ppm , divide by 7.8

## Getting back to the Snowball Earth

We need 0.12 bar of $\mathrm{CO}_{2}(120,000 \mathrm{ppm})=9.36 \times 10^{5} \mathrm{GtCO} 2$ to melt the snowball Earth.

If the rate of volcanic outgassing was $2.7 \times 10^{12} \mathrm{~mol} / \mathrm{y}$ we multiply by $44 \mathrm{~g} / \mathrm{mol}=1.19 \times 10^{14} \mathrm{~g} / \mathrm{y}$ or $0.119 \mathrm{GtCO} 2 / \mathrm{y}$

Then...
$9.36 \times 10^{5} \mathrm{GtCO} 2$ divided by $0.119 \mathrm{GtCO} 2 / y=8$ million years
For a rate of $5.4 \times 10^{12} \mathrm{~mol} / \mathrm{y}$ it would take: 4 million years

## Present Day $\mathrm{CO}_{2}$ emissions

## CARBON DIOXIDE SOURCES AND SINKS

Before the industrial age, sources of $\mathrm{CO}_{2}$ were balanced by sinks



The End

## 1. Glacial deposits

- Distributed on all continents
- Tidal rhythmites indicate that they formed at sea level


