# Snowball Earth:

Jeff Lewis lewisj@viu.ca

# What is the Snowball Earth Theory?

 Entire planet was covered by snow and ice for prolonged periods between 750 Ma and 635 Ma





# What is the Snowball Earth Theory?

It was proposed to explain the paradox of tropical glaciation at sea level in the Neoproterozoic



Age Fossil time ranges Eon Era Period Quaternary (Millions of years) Cenozoic Tertiary 65 Mammals Birds Mesozoic Cretaceous <sup>o</sup>hanerozoic Jurassic Reptiles Triassic 245 umphibians Permian Land plants Pennsylvanian Paleozoic Mississippian Devonian Marinoan ertebrates Silurian Fish Ordovician 635 Ma 570 Cambrian Precambrian Proterozoic Sturtian of earth's history 750 Ma 2500 Archean 3800 ~906~ Hadean

Geologic Time Scale

(Hoffman and Schrag 2000)

# What is the geological evidence?

- 1. Glacial deposits
- 2. Cap carbonates
- 3. Banded iron formations (BIF)
- 4. Timing of early life



DEPOSITS





- Distributed on all continents
- Tidal rhythmites indicate that they formed at sea level



Fortnightly tidal bundles (N, neaps) in Elatina Fm synglacial siltstone, South Australia. Note syn-sedimentary fold with onlapping laminae (arrows). Low-inclination remnant magnetization carried by detrital hematite was acquired as folding progressed.





#### distribution of glacial deposits



(Hoffman and Schrag 2000)

 Paleomagnetic data suggest they formed near the equator, none poleward of 60 degrees



• Multiple magnetic reversals indicate that glaciation lasted several hundreds of thousands, to a few million years



Principal of the 'reversal test'. Stratigraphically coherent polarity reversals are assumed to represent reversals of the geomagnetic field, contemporaneous with sedimentation. Elatina Fm records up to six polarity reversals.

#### 2. Cap carbonates

CAP CARBONATES



- Warm water deposit
- Associated with most Neoproterozoic glacial deposits
- Can be hundreds of meters thick



Younger Cryogenian cap-carbonate sequence in the Windermere Supergroup, Shale Lake section, Mackenzie Mtns, NWT, Canada

#### 2. Cap carbonates

CAP CARBONATES



 Aragonite fans indicate rapid deposition under hot temperatures

#### 3. Banded Iron Formation (BIF)

• Absent from the geologic record for a billion years

If  $O_2$  is absent, iron is soluble as ferrous (Fe<sup>2+</sup>) ion. If  $O_2$  is present, iron is insoluble as ferric (Fe<sup>3+</sup>) ion.





#### 3. Banded Iron Formation (BIF)



If  $O_2$  is absent, iron is soluble as ferrous (Fe<sup>2+</sup>) ion. If  $O_2$  is present, iron is insoluble as ferric (Fe<sup>3+</sup>) ion.



#### Geologic Time Scale



## 4. Timing of early life

 DNA calculations put the beginning of multicellular life near the end of the Snowball period

# Snowball Earth

~750-635 Ma



### Runaway icehouse as advocated by Paul Hoffman

#### How to get out of the snowball?



### Runaway icehouse as advocated by Paul Hoffman

#### How to get out of the snowball?

- The atmosphere is cut off from the ocean (no drawdown of  $CO_2$ )
- Volcanic outgassing of  $CO_2$  accumulates in the atmosphere
- It would take ~ 10 million years to overcome the ice house
- Would need roughly 350 times present  $CO_2$  levels (~0.12 bar)



# What are the strengths and weaknesses of the Snowball Earth Theory?

Vatnajökull

Magnús Tumi Guðmundsson

#### **Strengths**

- Glaciation on all continents
- Glaciation at sea level
- Glaciation near the equator



(Hoffman and Schrag 2000)

• The glaciations could have lasted for up to 10 million years



#### <u>Weaknesses</u>

#### Gaskiers

Glaciation is not global

#### Marinoan

Glaciation is global and synchronous

#### Sturtian

 Glaciation is global but not synchronous

<u>Weaknesses</u>



#### <u>Weaknesses</u>



#### 2. Cap carbonates

CAP CARBONATES







• An atmosphere super saturated with  $CO_2$  would lead directly to rapid deposition of carbonate

 $Ca^{2+} + 2HCO_3^- \leftrightarrow CaCO_3 + CO_2 + H_2O$ 

#### 2. Cap carbonates

#### <u>Weaknesses</u>

Marinoan: Cap carbonate only Mackenzie Mtns, NW Canada 1-4 m thick globally grey cop dolemite green diamictite PHoffmAn photo

#### 3. Banded Iron Formation (BIF)

<u>Strengths</u>



• an anoxic ocean in contact with the atmosphere would precipitate iron to form the BIFs

#### 3. Banded Iron Formation (BIF)

#### <u>Weaknesses</u>



#### Gaskiers • No BIFs

# MarinoanVery few BIFs

Very lew DIIS





#### Geologic Time Scale

|             | Eon        | Era      | Period        | Age               | Fossil time ranges |    |         |        |      |       |       |
|-------------|------------|----------|---------------|-------------------|--------------------|----|---------|--------|------|-------|-------|
| E           |            |          | Quaternary    | ars)              |                    |    |         |        |      |       |       |
|             |            | Cenozoic | Tertiary      | G (Millions of ye |                    |    |         |        |      | nmals | 0     |
|             | .e         | oic      | Cretaceous    |                   |                    |    |         |        |      |       | Birds |
| FALL        | ozo        | soz      | Jurassic      |                   |                    |    |         |        |      | Man   |       |
| The second  | Phaner     | Me       | Triassic      | 245               |                    |    |         | :0     | iles |       |       |
|             |            | ozoic    | Permian       |                   |                    |    | ŝ       | ians   | Rept |       |       |
|             |            |          | Pennsylvanian |                   |                    |    | nd plan | Amphib | ιL.  |       |       |
|             |            |          | Mississippian |                   |                    |    |         |        |      |       |       |
|             |            | ale      | Devonian      |                   | se                 |    | Ľa      |        |      |       |       |
|             |            | 0        | Silurian      |                   | rate               | ÷  |         |        |      |       |       |
| and they    |            |          | Ordovician    | 570               | i teb              | Ŭ, |         |        |      |       |       |
| Precambrian | roterozoic |          | Cambrian      | 4                 | Inve               |    |         |        |      |       | -     |
| s history   | ā          |          |               | 2500              |                    |    |         |        |      |       |       |
| of earth's  | Archean    |          |               | 3800              |                    |    |         |        |      |       |       |
| %06~)       | Hadean     |          |               | 4600              |                    |    |         |        |      |       |       |

## 4. Timing of early life

#### **Strengths**

 After Snowball Earth there would be new habitats for life to radiate into

# Snowball Earth

~750-635 Ma

#### <u>Strengths</u>

#### 4. Timing of early life



#### Weaknesses

#### 4. Timing of early life



#### Weaknesses

#### 4. Timing of early life

How could photosynthetic life survive globally ice covered oceans?



## Conclusions

Possibly two Snowball Earth episodes (750 Ma and 635 Ma)

#### Sturtian (750 Ma)

Equatorial glacial deposits Equatorial continents Thick cap carbonates Many BIFs Glaciation not synchronous

#### Marinoan (635 Ma)

Equatorial glacial deposits Higher latitude continent Thin cap carbonates Very few BIFs Glaciation is synchronous

#### Weakness of Snowball Earth: photosynthetic life

**Strength of Snowball Earth:** a single mechanism can explain many anomalous deposits

# For more information:

# snowballearth.org

## How do we know how long the Snowball Earth events lasted?

From simple models, it was calculated that 0.12 Bar (or 120,000 ppm) of  $CO_2$  would be required to melt a completely ice covered Earth.

The present rate of volcanic outgassing of  $CO_2$  ranges between: 2.7×10<sup>12</sup> mol/y to 5.4×10<sup>12</sup> mol/y

How do we change mol/y into something more useful?

 $CO_2 = 1 C$  atom (12 g/mol) and 2 O atoms (2x16 g/mol) = 44 g/mol



## How do we know how long the Snowball Earth events lasted?

From simple models, it was calculated that 0.12 Bar (or 120,000 ppm) of  $CO_2$  would be required to melt a completely ice covered Earth.

The present rate of volcanic outgassing of  $CO_2$  ranges between: 2.7x10<sup>12</sup> mol/y to 5.4x10<sup>12</sup> mol/y

How do we change mol/y into something more useful?

CO2 = 1 C atom (12 g/mol) and 2 O atoms (2x16 g/mol) = 44 g/mol

So  $2.7 \times 10^{12}$  mol/y times 44 g/mol =  $1.19 \times 10^{14}$  g/y

This is also the equivalent of  $1.19 \times 10^{11}$  kg/y or 0.119 Gt/y

# Lets consider the current level of $CO_2$ in the atmosphere

(10<sup>6</sup> kg) Megatonne Mt =  $(10^{12} \text{ kg})$  Teragram Tg (10<sup>9</sup> kg) Gigatonne Gt =  $(10^{15} \text{ kg})$  Petagram Pg

How do we convert Gigatonnes of  $CO_2$  into ppm or visa versa?

First, what does ppm mean? ppm is parts per million (and usually per volume)

Consider today's atmospheric concentration of  $CO_2$ =385 ppm (and rising)

We can convert this volume mixing ratio to the total mass of  $CO_2$  in the atmosphere by multiplying this number by the mass of the atmosphere weighted by the relative mass of  $CO_2$  atoms compared to air molecules (to simplify we assume that air is composed of 80% N<sub>2</sub> and 20%  $O_2$ ):

We next need to calculate the mass of the atmosphere.

# How do we calculate the mass of the atmosphere?

Pressure is Force per Area: P = F / Aand Force is Mass times acceleration:  $F = m \times g$ 

So... we can rearrange the equations to solve for mass:

m =  $(P \times A)/g$  Area of a sphere  $(A) = 4 \times \pi \times r^2$ 

Where: global average surface pressure (P) = 100000 Pa (1000 hPa or mb) the radius of the Earth (r) = 6370 km (6.37×10<sup>6</sup> m)

the force of gravity (g) =  $9.8 \text{ m/s}^2$ 

So the mass of the atmosphere is:

m =  $(100000 \text{ Pa})(4)(3.14)(6370000 \text{ m})^2/9.8 \text{ m/s}^2$ =  $5.2 \times 10^{18} \text{ kg}$ 

## How do we convert ppm to Gt?

Now we can convert this volume mixing ratio to the total mass of  $CO_2$  in the atmosphere by multiplying this number by the mass of the atmosphere weighted by the relative mass of  $CO_2$  atoms compared to air molecules (for simplification we assume that air is composed of 80% N<sub>2</sub> (28 g/mol) and 20% 32 g/mol)  $O_2$ ):

 $(385 \times 10^{-6}) \times 44/(0.8 \times 28 + 0.2 \times 32) \times 5.2 \times 10^{18} \text{ kg} = 3059 \times 10^{12} \text{ kg}CO_2$ = 3059 Gt CO<sub>2</sub>

Where: 44 g/mol is the mass of a unit of carbon 28 g/mol is the mass of  $N_2$ 32 g/mol is the mass of  $O_2$ 

(To get the mass of Carbon, divide by 44 and multiply by 12 = 834 Gt C)

So to simplify everything, to convert 385 ppm to Gt  $CO_2$ , multiply by 7.8 to convert Gt  $CO_2$  to ppm, divide by 7.8

## Getting back to the Snowball Earth

- We need 0.12 bar of  $CO_2$  (120,000 ppm) =  $9.36 \times 10^5 G + CO_2$  to melt the snowball Earth.
- If the rate of volcanic outgassing was  $2.7 \times 10^{12}$  mol/y we multiply by 44 g/mol =  $1.19 \times 10^{14}$  g/y or 0.119 GtCO<sub>2</sub>/y

Then...

- $9.36 \times 10^5$  GtCO<sub>2</sub> divided by 0.119 GtCO<sub>2</sub>/y = 8 million years
- For a rate of 5.4×10<sup>12</sup> mol/y it would take: 4 million years

## Present Day CO<sub>2</sub> emissions





Atmospheric Carbon +3.7 (net accumulation)





- Distributed on all continents
- Tidal rhythmites indicate that they formed at sea level



