Contribution of terrestrial ecosystems to global carbon dynamics

GEOL 412 – Climate Change

David Gaumont-Guay, Ph.D. October 2011

Atmospheric CO₂ concentration – Latitude

+ = source (to atmosphere) - = sink

	1980 s	1990 s	2000-2005
Atmospheric increase	3.3	3.2	4.1
Emissions	5.4	6.4	7.2
Net ocean-to-atmosphere flux	-1.8	-2.2	-2.2
Net land-to-atmosphere flux	-0.3	-1.0	-0.9
Partitioned as follows			
Land use change flux	1.4	1.6	Na
Residual terrestrial sink	-1.7	-2.6	Na

Adapted from IPCC 4AR (2007), Scientific basis, Table 7.1

Carbon SINK (sequestration)

Carbon SOURCE (no sequestration, loss to atmosphere)

Then – Boreal forest

~29% of world's forested area ~50% of total C (soil and biomass)

www.berms.ccrp.ec.gc.ca

Trembling aspen Deciduous 85 y-old Black spruce Coniferous wet 128 y-old Jack pine Coniferous dry 80 y-old

Net ecosystem productivity (NEP) or carbon sequestration

CO₂

Balance between photosynthesis and respiration

Eddy covariance approach – Instantaneous

Eddy covariance approach – Seasonal and annual

Eddy covariance approach – Interannual

Components of ecosystem respiration

Now – Temperate forest

Douglas-fir forest on Vancouver Island, near Campbell River

Eddy covariance approach – Forest harvesting

Intermediate

Eddy covariance approach – Forest harvesting

Eddy covariance approach – Forest fertilization

Eddy covariance approach – Forest fertilization

VIU VANCOUVER ISLAND

Eddy covariance approach – Insects epidemics

Lodgepole pine forest in northern BC, near Prince George

Eddy covariance approach – Insect epidemics

Component approach – Urban landscapes

Component approach – Urban landscapes

Net Biome Productivity (NBP)

Integration of carbon sequestration (NEP) across the landscape taking into account:

- Vegetation diversity
- Soil characteristics
- Climate
- Disturbances
- Management practices
- Urban landscapes (?)

