Earth's Weather and Climate Fundamental controls and processes

GEOL-412 – Climate Change

Important factors controlling the Earth's Weather and Climate

- Solar radiation
- Characteristics of the atmosphere
- Differential heating between tropical and temperate regions
- Convection systems in the atmosphere
- Jet streams
- Albedo and heat capacity
- Monsoons
- Ocean currents
- Thermohaline circulation
- ENSO and PDO
- Greenhouse effect

Net solar radiation at surface (W/m²)

Net surface solar radiation

Annual mean

Net geothermal heat flow at surface (mW/m²)

Land-surface temperatures

Sea-surface temperatures (SSTs)

Significance of the atmosphere

The atmosphere is effectively about 20 km thick

Passenger planes fly at about 10 km

Tallest mountains are around 8 km high

Oceans - around 5 km deep

Differential heating of tropical versus temperate regions leads to large-scale atmospheric convection

M. Pidwirny, UBC-O

Jet Streams

Albedo – the reflectivity of a surface

Albedo values for earth surfaces

Heat capacity

Can also be expressed in calories per gram per degree – cal/g/°C or cal g⁻¹ °C⁻¹

Substance	Heat capacity (J g ⁻¹ K ⁻¹)	Substance	Heat capacity (J g ⁻¹ K ⁻¹)		
Water	4.18	Granite	0.79		
Substance	Heat capacity (cal g ⁻¹ °C ⁻¹)	Substance	Heat capacity (cal g ⁻¹ °C ⁻¹)		

Heat capacity

 $q = m C \Delta T$ or $\Delta T = q/(m C)$

where q is the heat energy (cal), m is the mass (g), C is the heat capacity (cal g⁻

¹ C⁻¹) and ΔT is the change in temperature (°C)

Substance	Heat capacity (cal g ⁻¹ C ⁻¹)	ΔT (^o C) with addition of 1000 calories	q (energy, cal) required to in- crease T by 2º C		
Water (1000 g)	1.00	1	2000		
Granite (1000 g)	0.19	5.26	380		
Air (1000 g)	0.24	4.17	520		

Monsoons

(see pages 138/9 in Ruddiman for more on monsoons)

Pakistan floods, 2010

10

Ap

The importance of ocean currents in the global thermal energy budget

But even at high latitudes water absorbs a lot more radiant energy than other surfaces. This radiant energy is converted into heat.

Sea-surface temperatures (SSTs)

Major ocean currents

Major ocean currents

The effect of opposing current directions

Dacifa Brazil

Lima, Peru										
Month	Average Sunlight (hours)	Te Ave Min	empe rage Max	ratu Rec Min	re ord Max	Discomfort from heat and humidity	Rela hum	tive idity pm	Average Precipitation (<u>mm</u>)	Wet Days (+0.25 mm)
Jan	6	19	28	15	32	Medium	93	69	3	0.5
Feb	7	19	28	15	33	Medium	92	66	0	0.1
March	7	19	28	16	33	Medium	92	64	0	0.1
April	7	17	27	13	34	Medium	93	66	0	0.2
May	4	16	23	11	29	Moderate	95	76	5	0.8
June	1	14	20	9	27	-	95	80	5	1
July	1	14	19	9	27	-	94	77	8	1
Aug	1	13	19	10	27	-	95	78	8	2
Sept	1	14	20	11	26	-	94	76	8	1
0 ct	3	14	22	12	26	-	94	72	3	0.2
Nov	4	16	23	11	29	Moderate	93	71	3	0.2
Dec	5	17	26	13	31	Medium	93	70	0	0.1

Recire, Drazii										
Month	Average Sunlight (hours)	Temperature Average Record				Discomfort from heat	Relative humidity		Average Precipitation	Wet Days (+0.25
		Min	Max	Min	Max	and humidity	am	pm	(<u>mm</u>)	mm)
Jan	7	25	30	22	34	High	77	69	53	10
Feb	7	25	30	21	34	High	81	70	84	12
March	8	24	30	21	34	High	81	71	160	14
April	8	24	29	21	34	High	83	73	221	17
May	7	23	28	21	32	Medium	84	74	267	21
June	5	23	28	19	32	Medium	84	75	277	21
July	6	22	27	18	31	Medium	83	75	254	22
Aug	7	22	27	18	31	Medium	82	73	152	19
Sept	7	23	28	19	32	Medium	78	70	64	11
0 ct	9	24	29	20	33	Medium	75	67	25	8
Nov	9	24	29	21	33	Medium	74	68	25	7
Dec	8	25	29	21	33	Medium	76	67	28	6

Major ocean currents

The Gulf Stream

http://seawifs.gsfc.nasa.gov/SEAWIFS/IMAGES/eastcoast.gif

Compare the climates of Newfoundland and southern France – both at the same latitude

What happens to the Gulf Stream?

Thermohaline circulation

Credit: Image courtesy CLIVAR (after W. Broecker, modified by E. Maier-Reimer)

NADW = North Atlantic deep water AABW = Antarctic bottom water

Major ocean currents

El Nino over the past century

Sea surface temperatures in the east Pacific

El Nino – Southern Oscillation (a.k.a. ENSO) has climate impacts in many parts of the world, including western Canada.

Pacific Decadal Oscillation

Sea surface temperature anomalies and wind trends

From Joint Inst. for the Study of the Atmos. and Oceans (U. Wash.) - http://jisao.washington.edu/

Numerous studies have attempted to determine the effect of the PDO and ENSO on each other. The results have been largely inconclusive and/or contradictory. However, a study by Gershunov and Barnett (1998) shows that the PDO has a modulating effect on the climate patterns resulting from ENSO. The climate signal of El Nino is likely to be stronger when the PDO is highly positive; conversely the climate signal of La Nina will be stronger when the PDO is highly negative. This does not mean that the PDO physically controls ENSO, but rather that the resulting climate patterns interact with each other.

http://ffden-2.phys.uaf.edu/645fall2003 web.dir/Jason Amundson/enso.htm

1.4 ENSO index and Global Surface Air Temperature data 1.2 -----Temp 1 ENSO3.4 0.8 (compared with 1951-1980 average) 0.6 Temperature - C 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2

1975

1980

1985

1990

1970

2000

2005

2010

1995

1.6

1950

1955

1960

1965

Pakistan floods, 2010

10

Ap

Pakistan typically receives about half its annual rainfall of 250–500 mm during July and August.

In 2010 between 200 and 415 mm fell over a 3-day period in late July. Heavy rain continued through the first half of August.

The July rainfall in the Northwest Frontier Province was 1.8 times normal.

2010 summertime jet stream

2010 La Nina

7-day Average Centered on 08 September 2010

Summer heat wave in Russia and other parts of Asia

2011 - Bummer Summer?

The Greenhouse Effect

Molecules with two atoms can only vibrate back and forth

