- Lat's \& Dep's

- First, The Math (oh boy!) \triangle
- Trigonometry 乙
- Sine
- Soh ...
- it's a ratio
- ... means "how small opp. is compared to hypotnuse"
- ... if $\operatorname{Sin}=0.70 \ldots$ it means opp. is only 70% as big as hypotenuse
- kinda simple, really \nearrow
- Cosine
- Cah
- also a ratio
- ... means "how small adj. is compared to hypotenuse"
- ... if $\operatorname{Cos}=0.50 \ldots$ it means adj. is 50% the size of hypotenuse
- Tangent
- Toa
- we don't need to worry about Tan today \square
- Unknown Distance \triangle
- $\quad \mathrm{a} 2+\mathrm{b} 2=\mathrm{c} 2 \underline{乙}$
- fairly basic I hope
- That's it for the "math" \nearrow
- Then the Surveying Part (better, maybe) \triangle
- vectors
- Your record bearing (direction) and distance (magnitude)
- from this we want change in N-S (latitudes) and E-W (departures】
- can you see the link to $\operatorname{Sin} \& \operatorname{Cos}$?
- video \boxed{Z}
- important :angles are 'off the N-S' line
- important: '+' and '-' values are possible
- A closed traverse example
- 1) $\mathrm{POC}=0,0=\operatorname{Stn} \mathrm{A}$
- 2) $\mathrm{brg}=060 \& \mathrm{HD}=45.0 \mathrm{~m} . . .=$ Stn. B
- lat $=\cos (60) * \mathrm{HD}=(0.5) * 45 \mathrm{~m}=+22.5 \mathrm{~m}$
- $\mathrm{dep}=\sin (60) * \mathrm{HD}=(0.87) * 45 \mathrm{~m}=+39.0 \mathrm{~m}$
- 3) $\mathrm{brg}=180 \& \mathrm{HD}=50.0 \mathrm{~m} . . .=$ Stn. C
- \quad lat $=-50.0 \mathrm{~m}$
- $\operatorname{dep}=0$
- hope that was obvious
-
- 4) $\operatorname{brg}=250 \& H D=30.0 \mathrm{~m} . . .=$ Stn. D
- 5) $\mathrm{brg}=340 \& \mathrm{HD}=50.0 \mathrm{~m}=$ Stn. A
- calculate the Lat's \& Dep's for all Stn's (including the last Stn A)
- Did we return to 0,0 or not?
- tally all lat's
- tally all dep's
- how far off are we?
- lat = ?
- dep = ?
- straight line = ?
- \% error?

- Summary

- Sin \& Cos are simple ratios

- "how small is one side compared to the hypotenuse"
- we "traverse the hypotenuse"
- so we use Sin \& Cos to determine lat \& dep
- A closed traverse
- we return to where we started ... at least physically
- due to errors in measurements, our plot will not 'return exactly'
- we can do a hand plot and estimate the error (but our plot has errors!)
- we can use lat's \& dep's
- to determine error (this lecture)
- to correct the error (next lecture)

